Experimental and theoretical framework of nonlinear geotomography. Part II: Dynamic and kinematic characteristics of pendulum waves in high-stress geomedia and processes of seismic emission

In continuation of the expert analysis, review and generalization of the modern scientific achievements in nonlinear geomechanics and geophysics in Part I of this article, with a view to justifying a new trend in the geosciences and in mining, namely, Foundations of Nonlinear Geotomography Using Pendulum Waves, this Part II of the article focuses on the identification of a basic «formula designer» for processing of an integrated experimental information to estimate dynamic and kinematic characteristics of pendulum waves, on determination of energy criterion of pendulum wave origination and travel in the predominant field of stresses and strains, on finding the connection between the pendulum waves and Pand S-waves, induced earthquakes, blasts and other mechanical sources of nonlinear deformation–wave, seismic–emission, massand gas-exchange and physicochemical processes in high-stress blocky geomedia and geomaterials with complex internal structure. In this respect, the major role belongs to some research findings obtained by this article co-authors and published earlier though «discretely and conceptually unrelated.» The same is valid for the important results of the other researchers quoted in this article. The formalized connections between the dynamic and kinematic characteristics of the nonlinear elastic pendulum waves in highstress geomedia with hierarchical block structure are presented with regard to energy characteristics of the pendulum wave sources as well as elastic moduli of rocks (Lamé coefficient, density of structural elements of geomaterials, Poisson’s ratio, Young’s modulus). The spectroscopic analysis theory is developed for the connections between the amplitudes and periods of the elastic pendulum wave packets and their material carriers—geoblocks on the correspondent hierarchical levels, as well as with the levels of the emitted seismic energy on the canonical scale of hierarchical representations. The example records of the nonlinear deformation–wave processes—«carriers» of pendulum waves—in situ and in loading tests of different geomaterials to failure are given in the article.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 17-17-01282.

For citation:

Oparin V. N., Adushkin V. V., Vostrikov V. I., Yushkin V. F., Kiryaeva T. A. Experimental and theoretical framework of nonlinear geotomography. Part II: Dynamic and kinematic characteristics of pendulum waves in high-stress geomedia and processes of seismic emission. MIAB. Mining Inf. Anal. Bull. 2019;(11):5-26. [In Russ]. DOI: 10.25018/0236-1493-2019-11-0-5-26.

Issue number: 11
Year: 2019
Page number: 5-12
ISBN: 0236-1493
UDK: 550.3 + 551 + 622
DOI: 10.25018/0236-1493-2019-11-0-5-26
Authors: Oparin V. N., Adushkin V. V.,, Vostrikov V. I., etc.
About authors:

V.N. Oparin1, Corresponding Member of Russian Academy of Sciences, Dr. Sci. (Phys. Mathem.), Professor, Head of Department,

e-mail: oparin@misd.ru,

V.V. Adushkin1, Аcademician of Russian Academy of Sciences, Advisor of Russian Academy of Sciences, Dr. Sci. (Phys. Mathem.), Institute of Geosphere Dynamics of Russian Academy of Sciences, 119334, Moscow, Russia, e-mail: adushkin@idg.chph.ras.ru,

V.I. Vostrikov1, Cand. Sci. (Eng.), Head of Laboratory, e-mail: vvi49@mail.ru,

V.F. Yushkin1, Dr. Sci. (Eng.), Leading Researcher, e-mail: L14@ngs.ru,

Kiryaeva1, Cand. Sci. (Eng.), Senior Researcher, e-mail: coalmetan@mail.ru,

1 Chinakal Institute of Mining of Siberian Branch

of Russian Academy of Sciences, 630091, Novosibirsk, Russia.

Keywords: Nonlinear geotomography, mathematical and mechanical frameworks, pendulum waves, hierarchical block structure, spectroscopy, dynamic and kinematic characteristics, stress–strain analysis, energy condition of initiation and travel of pendulum waves, canonical connection between seismic energy emission and geoblock sizes, rock mass, emission sources.
Bibliography:

1.    Oparin V. N., Adushkin V. V., Vostrikov V. I., Usol'tseva O.M., Mulev S. N., Yushkin V. F., Kiryaeva T. A., Potapov V. P. An experimental and theoretical framework of nonlinear geotomography. Part I: Research problem statement and justification. MIAB. Mining Inf. Anal. Bull. 2019;(1):5-25. [In Russ]. DOI: 10.25018/0236-1493-2019-01-0-5-25.

2.    Adushkin V. V., Oparin V. N. From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Media. J. of Mining Science, P. I: 2012, Vol. 48, No. 2, pp. 203— 222; P. II: 2013, Vol. 49, No. 2, pp. 175−209; P. III: 2014, Vol. 50, No. 4, pp. 623−645; P. IV: 2016, Vol. 52, No. 1, pp. 1−35.

3.    Oparin V. N., Tapsiev A. P., Vostrikov V. I., etc. On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part I: Seismic Regime. J. of Mining Science, 2004, Vol. 40, No. 4, pp. 321—338.

4.    Oparin V. N., Simonov B. F. Nonlinear deformation-wave processes in the vibrational oil geotechnologies. J. of Mining Science, 2010, Vol. 46, No. 2, pp. 95—112.

5.    Oparin V. N., Adushkin V. V., Kiryaeva T. A., Potapov V. P. Tyukhrin V. G., Glumov A. V. Effect of Pendulum Waves from Earthquakes on Gas-Dynamic Behavior of Coal Seams in Kuzbass. J. of Mining Science, 2018, Vol. 40, No. 1, pp. 3—14.

6.    Oparin V. N. Theoretical Fundamentals to Describe Interaction of Geomechanical and Physicochemical Processes in Coal Seams. J. of Mining Science, 2017, Vol. 53, No. 2, pp. 201—215.

7.    Oparin V. N. Pendulum waves and «geomechanical temperature». Trudy 2-oy Rossiysko-Kitayskoy mezhdunarodnoy konferentsii «Nelineynye geomekhaniko-geodinamicheskie protsessy pri otrabotke mestorozhdeniy poleznykh iskopaemykh na bol'shikh glubinakh». Novosibirsk: IGD SO RAN, 2012, pp. 169—172. [In Russ].

8.    Rikitake T. Predskazanie zemletryaseniy [Earthquake forecast], Moscow, Mir, 1979, 388 p.

9.    Aki K., Richards P. Kolichestvennaya seysmologiya. Teoriya i metody. T. 1 [Quantitative seismology. Theory and methods. Vol. 1], Moscow, Mir, 1983, 519 p.

10.    Sobolev G. A. Osnovy prognoza zemletryaseniy [Foundations of earthquake forecast], Moscow, Nauka, 1993, 314 p.

11.    Oparin V. N., Simonov B. F., Yushkin V. F., Vostrikov V. I., Pogarskiy Yu. V., Nazarov L. A. Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh [Geomechanical and technical foundations for enhanced oil recovery in vibro-wave technologies], Novosibirsk, Nauka, 2010, 404 p.

12.    Wang K., Oparin V. N. Study on recognition of pendulum-type wave propogation in block rock mass. Journal of Advanced Oxidation Technologies. 2018, Vol. 21, Jssue 2, pp. 95—110.

13.    Sadovskiy M. A., Kedrov O. K., Pasechnik I. P. Seismic energy and volume of sources of the crust earthquakes and underground explosions. Doklady Akademii nauk. 1985. vol. 283, no 5, pp. 1153—1156. [In Russ].

14.    Gurvich I. I., Boganik G. N. Seysmicheskaya razvedka [Seismic exploration], Moscow, Nedra, 1980, 551 p.

15.    Oparin V. N., Timonin V. V., Karpov V. N., Smolyanitskiy B. N. Application of energy volumetric rock destruction criterion to improvement of rotary–percussion drilling technology. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017, no 6, pp. 81—104. [In Russ].

16.    Oparin V. N., Usol'tseva O. M., Semenov V. N., Tsoi P. A. Evolution of stress—strain state in structured rock specimens under uniaxial loading. J. of Mining Science, 2013, Vol. 49, No. 5, pp. 865—877.

17.    Oparin V. N., Kiryaeva T. A., Usol'tseva O. M. Nonlinear deformation-wave processes in various rank coal specimens loaded to failure under varied temperature. J. of Mining Science, 2015, Vol. 51, No 4, pp. 641—658.

18.   Oparin V. N., Tanayno A. S. Kanonicheskaya shkala ierarkhicheskikh predstavleniy v gornom porodovedenii [Canonical scale of hierarchical representation in the rock science], Novosibirsk, Nauka, 2011, 259 p.

19.    Zhurkov S. N. Kinetic concept of strength of solids (thermofluctuation mechanism). Vestnik Akademii nauk SSSR. 1968, no 3, pp. 46—52. [In Russ].

20.    Zhurkov S. N., Kuksenko V. S., Petrov V. A. Predicting rock fracture. Fizika Zemli. 1977, no 6, pp. 11—18. [In Russ].

21.    Sadovskiy M. A., Adushkin V. V., Spivak A. A. Sizes of irreversible deformation zones under blasting in blocky medium. Izbrannye trudy [Selected works], Moscow, Nauka, 2004, pp. 109—115.

22.    Oparin V. N., Annin B. D., Chuguy Yu. V. Metody i izmeritel'nye pribory dlya modelirovaniya i naturnykh issledovaniy nelineynykh deformatsionno-volnovykh protsessov v blochnykh massivakh gornykh porod. Red. V.L. Shkuratnik [Methods and instrumentation for modeling and fullscale investigation of nonlinear deformation–wave processes in blocky rock masses. Shkuratnik V. L. (Ed.)], Novosibirsk, Izd-vo SO RAN, 2007, 320 p.

23.    Oparin V. N., Bagaev S. N., Malovichko A. A. Metody i sistemy seysmodeformatsionnogo monitoringa tekhnogennykh zemletryaseniy i gornykh udarov. Red. N.N. Mel'nikov [Methods and systems of seismic deformation monitoring of induced earthquakes and rock bursts. Mel'nikov N. N. (Ed.)], Novosibirsk, Izd-vo SO RAN. vol. 1. 2009, 304 p. vol. 2. 2010, 261 p.

24.    Geomekhanicheskie polya i protsessy: eksperimental'no-analiticheskie issledovaniya formirovaniya i razvitiya ochagovykh zon katastroficheskikh sobytiy v gornotekhnicheskikh i prirodnykh sistemakh. T. 1. Red. N.N. Mel'nikov [Geomechanical fields and processes: experimental and analytical research into initiation and growth focal zones of catastrophes in mine-technical and natural systems. Vol. 1. Mel'nikov N. N. (Ed.)], Novosibirsk, Izd-vo SO RAN, 2018, 549 p.

25.    Wang Kaixing, Dou Linming, Pan Yishan. Study of tunnel roof anti impact and energy absorption effect on block overburden rock mass failure. J. of China University of Mining and Technology. 2017, Vol. 46, No. 6, pp. 1212—1217.

26.    Zhou A. T., Wang K. Regularities of Two-Phase Gas Flow under Coal and Gas Outbursts in Mines. J. of Mining Science, 2017, Vol. 53, No. 3, pp. 533—543.

27.    Zuzana Weishauptová, Oldřich Přibyl, Ivana Sýkorová, Vladimír Machovič. Effect of bituminous coal properties on carbon dioxide and methane high pressure sorption. Fuel, 2015, 139, pp. 115—124.

28.    Kiani A., Sakurovs R., Grigore M., Sokolova A. Gas sorption capacity, gas sorption rates and nanoporosity in coals. International Journal of Coal Geology, 2018, 200, pp. 77—86.

29.    Shroder J. F., Davies T. Landslide Hazards, Risks, and Disasters. Amsterdam-OxfordWaltham: Elsevier, 2015. 492 p.

30.    Hudyma M., Brown L., Cortolezzis D. Seismic risk in Canadian mines. CIM MEMO, 2016, Sudbury, 14 p.

31.    Lasocki S., Orlecka-Sikora B., Mutke G., Pytel W., Rudzinski L. A catastrophic event in Rudna copper-ore mine in Poland on 29 November, 2016: what, how and why. In: Proc. 9th Int. Symp. on Rockbursts and Seismicity in Mines — RaSiM9, November 15—17, Santiago, Chile (J. A. Vallejos, ed.), S. A. Editec, Santiago, Chile, pp. 316 — 324.

32.    Wang Kai-xing, Pan Yi-shan, Dou Lin-ming. Energy transfer in block-rock mass during propagation of pendulum-type waves. Chinese Journal of Geotechnical Engineering, 2016, 38(12), pp. 2309—2314. [In Russ].

Subscribe for our dispatch