Test data of electromagnetic hammer for nonexplosive rock fracturing

The article presents the data of the benchmark and proving-ground testing of a pilot electromagnetic hammer with coupled electromagnetic motors. The electromagnetic hammer (EMH) is designed as an average size hammer meant for blow energy to 6000 J and manufactured at the Kirov Engineering Plant (Almaty, Kazakhstan) under an innovation grant of the National Agency for Technological Development (2016–2019). The tests of EMH were performed on an experimental bench equipped by hydraulic hoister and on a proving ground as attached implements of wheel-type shovel HYUNDAI 210. The dependences of the pull on the ferromagnetic armature travel and current in the inductance coils of electromagnetic motors are obtained. It is found that the unit blow energy is almost linearly related with the current, which enables adjustment of the blow energy in operation. The design features of the electromagnetic motors enable cooling of the inductance coils with both liquid and gaseous refrigerants, which allows EMH to be operated in various climatic conditions. The tests of EMH as attached implements of the wheeled shovel demonstrated functional capabilities of the hammer and its workability with a base machine. From the comparison of engineering data, by some parameters, the electromagnetic hammer can compete over the hydraulic hammers.

Keywords: mining practice, non-explosive fracturing, percussive machines, electromagnetic hammer, benchmark tests, proving-ground tests, pull, blow energy.
For citation:

Yedygenov Ye. K., Vasin K. A. Test data of electromagnetic hammer for nonexplosive rock fracturing. MIAB. Mining Inf. Anal. Bull. 2020;(5):80-90. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0-80-90.


The work was performed in the framework of the Target Financing Program No BR05236712 «Technological Modernization of Mining Production Based on the Transition to the Digital Economy» (2018—2020) of the Ministry of Education and Science of the Republic of Kazakhstan and the innovation grant from JSC «The National Agency for Technological Development» (2016—2019).

Issue number: 5
Year: 2020
Page number: 80-90
ISBN: 0236-1493
UDK: 622.232.74
DOI: 10.25018/0236-1493-2020-5-0-80-90
Article receipt date: 13.12.2019
Date of review receipt: 30.01.2020
Date of the editorial board′s decision on the article′s publishing: 20.04.2020
About authors:

Ye.K. Yedygenov1, Dr. Sci. (Eng.), Academician of AMR RK, Head of the Department of Geotechnics,
K.A. Vasin1, Senior Researcher; PhD Student, Satbayev University, e-mail: kvas2500@mail.ru,
1 D.A. Kunayev Mining Institute, 050046, Almaty, Kazakhstan.


For contacts:

K.A. Vasin, e-mail: kvas2500@mail.ru.


1. Mitusov A. A., Reshetnikova O. S., Mitusov P. E., Lagunova Yu.A. Studies of a hydraulic hammer for crushing rocks. Gornyy informatsionno-analiticheskiy byulleten’. 2016, no 11, pp. 125—134. [In Russ].

2. Shumakov V. I. Developing the theory of hydraulic cutting of sandstones with high pressure water jets. Gornyy informatsionno-analiticheskiy byulleten’. 2001, no 3, pp. 200—202.

3. Melamed Yu., Kiselev A., Gelfgat M., Dreesen D., James B. Hydraulic hammer drilling technology: developments and capabilities. Journal of Energy Resources Technology. 2000. Vol. 122, No 1. Рp. 1—7.

4. Tang J. R., Lu Y.Y., Ge Z. L., Xia B. W., Wang J. H. Combined drilling of hard rock with abrasive water jet and mechanical bit to improve drilling efficiency. Journal of Mining and Safety Engineering. 2013. Vol. 30, No 4. Рp. 621—627.

5. Jokiniemi H. Hydraulic junttan pile driving hammer. Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering (XIV ICSMFE). Hamburg, 6—12 September 1997. Рp. 1077—1080.

6. Andersson H., Simonsson K., Hilding D. Validation of a co-simulation approach for hydraulic percussion units applied to a hydraulic hammer. Advances in Engineering Software. 2018. Vol. 131. Рp. 103—115. DOI: 10.1016/j.advengsoft.2018.12.001.

7. Karkashadze G. G. Mekhanicheskoe razrushenie gornykh porod [Mechanical disintegration of rocks], Moscow, MGGU, 2004, 220 p.

8. Berry P., Blengini G. A., Fabbri S., Tafaro V.A. Safety in quarrying ornamental stones by using diamond wire. Mine Planning and Equipment Selection. Chapter 99. London, Routledge, 2000. Рp. 521—526. https:.doi.org/10.1201/9780203747124.

9. Dolipski M., Jaszczuk M., Cheluszka P., Sobota P., Kusak E., Kurek M. Dynamic model of a shearer`s cutting system. Mine Planning and Equipment Selection. Chapter 103. London, Routledge, 2000. Рp. 541—546. https:.doi.org/10.1201/9780203747124.

10. Deniz T., Shahab H. Predicting performance of impact hammers from rock quality designation and compressive strength properties in various rock masses. Tunnelling and Underground Space Technology. 2016. Vol. 59. Рp. 38—47.

11. Ocak I., Seker S. E., Rostami J. Performance prediction of impact hammer using ensemble machine learning techniques. Tunnelling and Underground Space Technology. 2018. Vol. 80. Рp. 269—276.

12. Kholodnyakov G. A., Ligotskiy D. N., Polovinko A. V. Flow charts of the hydraulic excavator with suspended hydraulic hammer in a face at primary blasting. Gornyy informatsionnoanaliticheskiy byulleten’. 2012, no 4, pp. 248—251. [In Russ].

13. Beksalov E. B., Absamatov E. N., Garipov F. R., Dandybaev M. Zh., Beksalov I. E.Blastless technology of hard rock breaking at open-pit mining and recommendations on its application. Mashinovedenie. 2008, no 6, pp. 117—124. [In Russ].

14. Lemos L. C., Silva J. J., Rocha Neto J. S. Estimated impact force for an electromagnetic hammer. Journal of Physics Conference Series. 2018. Vol. 1044, No 1. Article 012029. DOI: 10.1088/1742-6596/1044/1/012029.

15. Tao Wu, Yiru Tang, Shengwen Tang, Yongbo Li, Wangyong He Design and analysis of a new down-the-hole electromagnetic hammer driven by tube linear motor. IET Electric Power Applications. 2017. Vol. 11, No 9. Рp. 1556—1565.

16. Yedygenov Ye. K., Lyashkov V. Electromagnetic rock breaker for non-explosive rocks breaking. Proceedings of the 20th International Symposium on Mine Planning and Equipment Selection (MPES 2011). Almata, 2011. Рp. 1002—1012.

17. YedygenovYe.K. EAP Patent 026610. 28.04.2017.

18. Pavlov V. E. Studies of the operation modes of the electromagnetic hammer. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017. Vol. 21, no 12, pp. 164—173. [In Russ].

19. Moshkin V. I., Ugarov G. G. The duration of the linear electromagnetic engine in the drive of technological equipment. Vestnik Kurganskogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2016, no 3(42), pp. 84—87. [In Russ].

20. Skotnikov A. A., Vyal'tsev G. B. The research of the working process of an electromagnetic shock machine. Nauchnye problemy transporta Sibiri i Dal'nego Vostoka. 2014, no 1—2, pp. 296—299. [In Russ].

21. Shestakov I. Ya., Fisenko E. N., Remizov I. A. Features of the electromagnetic hammer.

Sibirskiy zhurnal nauki i tekhnologiy. 2014, no 2(54), pp. 85—88. [In Russ].

22. МТВ Model Series. Booklet. Istanbul, 2015, 15 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.