Improvement of the analysis and calculation methods of mine shaft design

Authors: Плешко М. С., Сильченко Ю. А., Панкратенко А. Н., Насонов А. А.

A feature of the mining industry expansion in Russia and abroad is the persistent increase in the underground mine depth. Such mineral reserves are accessed by vertical shafts. One of the most difficult problems of mine shaft design is determination of the optimal parameters of lining. The calculation methods currently in application have individual advantages and disadvantages, as well as contradictions. Accuracy of the methods as well as efficient application domains reduces with the increasing depth of shafts and worsening geological conditions. In this connection, with regard to the unavoidable inaccuracy of geological information at great depths, it is promising to improve the analysis and calculation methods. In simultaneous sinking and lining technique, these methods can be implemented in the integrated monitoring system with subsystems for the analysis and prediction of stress–strain behavior of rock mass and lining. At the construction stage, the monitoring data are used to estimate adequacy of shaft design models and for live correction of project solutions. In the period of operation, the monitoring data allow technical evaluation of shaft and, given regular updating and analysis, enable prompt hazard identification and precaution.

Keywords: Mine shaft, stresses, strains, monitoring.
For citation:

Pleshko M. S., Sil'chenko Yu. A., Pankratenko A. N., Nasonov A. A. Improvement of the analysis and calculation methods of mine shaft design. MIAB. Mining Inf. Anal. Bull. 2019;(12):5566. [In Russ]. DOI: 10.25018/0236-1493-2019-12-0-55-66.

Issue number: 12
Year: 2019
Page number: 55-66
ISBN: 0236-1493
UDK: 622.062
DOI: 10.25018/0236-1493-2019-12-0-55-66
Article receipt date: 23.10.2019
Date of review receipt: 28.10.2019
Date of the editorial board′s decision on the article′s publishing: 11.11.2019
About authors:

M.S. Pleshko1, Dr. Sci. (Eng.), Assistant Professor, e-mail:,
Yu.A. Sil'chenko, Cand. Sci. (Eng.), Deputy Head of Industrial,
Nuclear and Radiation Safety Expertise Department,
Federal autonomous institution «Main Department of State Expertise»
(Glavgosexpertiza of Russia), Moscow, Russia, e-mail:,
A.N. Pankratenko1, Dr. Sci. (Eng.), Professor, Head of Chair, e-mail:,
A.A. Nasonov, Cand. Sci. (Eng.), Deputy Head of Chair, Shakhty Institute (branch)
of Platov South-Russian State Polytechnic University (NPI), 346500, Shakhty, Russia,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

For contacts:

M.S. Pleshko, e-mail:


1. Maslennikov S. A. Lining design for vertical shafts in difficult geological conditions. Gornyy informatsionno-analiticheskiy byulleten’. 2016, no 6, pp. 50—55. [In Russ].
2. Prokopov A. Yu., Prokopova M. V., Tkacheva K. E. Justification of block support parameters for sumps in super-deep mine shafts. Nauchnoe obozrenie. 2014, no 11—3, pp. 768—772. [In Russ].
3. Kaledin O. S. Innovative construction technologies for super-deep mine shafts. Gornyy zhurnal. 2014, no 4, pp. 77—81. [In Russ].
4. Nasonov А. А. Efficient geotechnologies for construction of super-deep vertical shaft. Gornyy informatsionno-analiticheskiy byulleten’. 2018, no 1, pp. 26—33. [In Russ]. DOI: 10.25018/0236-1493-2018-1-0-26-33.
5. Yu Q., Yin K., Ma J., Shimada H. Vertical shaft support improvement studies by strata grouting at aquifer zone. Advances in Civil Engineering. 2018;7:1—10. June 2018. DOI: 10.1155/2018/5365987.
6. Walton G., Kim E., Sinha S., Sturgis G., Berberick D. Investigation of shaft stability and anisotropic deformation in a deep shaft in Idaho, United States. International Journal of Rock Mechanics and Mining Sciences, 2018, 105, pp. 160—171. DOI: 10.1016/j.ijrmms.2018.03.017.
7. Brown E. T., Hoek E. Trends in relationships between measured rock in situ stresses and depth. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1978;15:211—215.
8. Freydin A. M., Neverov S. A., Neverov A. A., Konurin A. I. Justification of choice and determination of geotechnology parameters with regard to stress–strain behavior of rock mass. Fundamental'nye i prikladnye voprosy gornykh nauk. 2017. Vol. 4, no 3, pp. 180—185. [In Russ].
9. Sentyabov S. V. Formation of stresses in concrete lining of vertical shafts. Problemy nedropol'zovaniya. 2015, no 1 (4), pp. 71—78. [In Russ].
10. Kharisov T. F., Antonov V. A. Stability of lining during construction of vertical shafts. Problemy nedropol'zovaniya. 2014, no 1 (1), pp. 65—69. [In Russ].
11. Lapin E. S., Pisetskiy V. B., Babenko A. G., Patrushev Yu. V. Mikon-GEO system for operational detection and control of geo-gas-dynamically hazardous zones in underground mineral mining. Bezopasnost' truda v promyshlennosti. 2012, no 4, pp. 18—22. [In Russ].
12. Zhou Y.-C., Liu J.-H., Huang S., Yang H.-T., Ji H.-G. Performance change of shaft lining concrete under simulated coastal ultra-deep mine environments. Construction and Building Materials. 2019, 230, Article 116909. DOI: 10.1016/j.conbuildmat.2019.1169090, 950-0618.
13. Li X., Xue W., Fu C., Yao Z., Liu X. Mechanical properties of high-performance steelfibre-reinforced concrete and its application in underground mine engineering. Materials. 2019;12(15):2470. DOI: 10.3390/ma12152470.
14. Golik V. I., Hasheva Z. M., Galachieva S. V. Diversification of the economic foundations of depressive mining region. The Social Sciences (Pakistan). 2015;10(6):746—749.

Mining World Russia
Subscribe for our dispatch