Technology of advance cutting of sloping and steeply pitching coal seams using hydraulic backhoe excavators

The advance cutting technology aims to maximize beneficial use of technological capability of different type excavating machines—power shovels and hydraulic backhoes. This technology is named as conversion of a coal zone into a no coal zone by means of layer-bylayer cutting of coal-and-rock blocks. Bucket capacities of cutting and loading equipment employed in open pit mines vary in wide ranges. In terms of a certain type of cutting machines, hydraulic backhoe excavators offer a variety of bucket capacities and, furthermore, replaceability of the bucket (the generic model of excavator can have up to 5 alternative combinations of the arm length and bucket capacity). Power shovels lack such an option. Thus, it is necessary to select a hydraulic backhoe model to be used in actual mining as power shovels are assigned a subordinate part of stripping in the no coal zone. This article reviews some guidelines on selection of a hydraulic backhoe excavator model for preliminary layer-by-layer cutting of coal and performs modeling of coal-and-rock block conversion to no coal blocks. The tentative conclusion states that the length of the coal mining front obeys the quadratic relation with the dip angle of coal seams.

Keywords: open pit mining, coal zone, no coal zone, hydraulic backhoe excavators, face power shovels, advance mining, coal-and rock blocks, structurally complex deposits.
For citation:

Katsubin A. V., Khoreshok A. A., Tyulenev M. A., Markov S. O. Technology of advance cutting of sloping and steeply pitching coal seams using hydraulic backhoe excavators. MIAB. Mining Inf. Anal. Bull. 2020;(11):27-36. [In Russ]. DOI: 10.25018/0236-1493-2020-110-27-36.

Acknowledgements:
Issue number: 11
Year: 2020
Page number: 27-36
ISBN: 0236-1493
UDK: 622.271.3
DOI: 10.25018/0236-1493-2020-11-0-27-36
Article receipt date: 18.03.2020
Date of review receipt: 15.07.2020
Date of the editorial board′s decision on the article′s publishing: 10.10.2020
About authors:

A.V. Katsubin1, Graduate Student; Director of Surface Mining Office, JSC «SUEK-Kuzbass», SUEK-Kuzbass JSC, 652507, Leninsk-Kuznetskiy, Russia
A.A. Khoreshok1, Dr. Sci. (Eng.), Professor, Director of Mining Institute, e-mail: haa.omit@kuzstu.ru,
M.A. Tyulenev1, Cand. Sci. (Eng.), Assistant Professor, Professor, e-mail: tma.geolog@kuzstu.ru,
S.O. Markov1, Cand. Sci. (Eng.), Assistant Professor,
1 T. Gorbachev Kuzbass State Technical University, 650000, Kemerovo, Russia.

 

For contacts:

A.A. Khoreshok, e-mail: haa.omit@kuzstu.ru.

Bibliography:

1. Kholodnyakov G. A., Loginov E. V., Tuan V. D. Low waste open-pit mining with hydraulic excavators. MIAB. Mining Inf. Anal. Bull. 2017, no 1, pp. 357—363. [In Russ].

2. Anistratov K. Yu. Global trends in the structure of the mining machinery park. Russian Mining Industry. 2011, no 6(100), pp. 22—26. [In Russ].

3. Shteyntsayg R. M. Metodika vybora ratsional'noy tekhnologii otrabotki zaboya kar'ernym gidravlicheskim ekskavatorom [Methods of selecting a rational technology of face mining with a hydraulic excavator], Moscow, IGD, 1979, 28 p.

4. Kolesnikov V. F., Koryakin A. I., Selyukov A. V., Pronoza V. G., Ermolaev V. A., Voronkov V. F. Razrabotka uglenasyshchennykh zon kar'ernykh poley vyemochno-transportnym kompleksom: monografiya [Mining of the coal-bearing zones of the quarry fields by the excavating and transport complex: monograph], Kemerovo, 2010, 247 p.

5. Mel'nikov N. N., Nevolin D. G., Skobelev L. S. Tekhnologiya primeneniya i parametry kar'ernykh gidravlicheskikh ekskavatorov [Technology of using and parameters of quarry hydraulic excavators], Apatity, KNTs RAN, 1992, pp. 77—86.

6. Kuleshov A. A. Analysis of trends in development of parameters and constructions of quarry hydraulic excavators. Proektirovanie predpriyatiy gornorudnoy promyshlennosti [Design of mining enterprises], Moscow, 1985, pp. 19—29.

7. Tyuleneva E. A., Lesin Yu. V., Litvin Ya. O. Research of the coal-bearing zones’ mining technology at Kuzbass open pits using simple and complex faces. Journal of Mining and Geotechnical Engineering. 2019, no 1, pp. 35—49. DOI: 10.26730/2618-7434-2019-1-35-49.

8. Merzlyakov V. G., Slesarev B. V., Shteyntsayg V. M. Komatsu Mining Germany's experience of using hydraulic excavators in quarries in Russia. Mining Equipment and Electromechanics. 2013, no 5, pp. 15—20. [In Russ].

9. Strelnikov A. V. Typical faces passports for the development of coal-bearing zones of Kuzbass quarry fields with backhoes. Part 1. General provisions. Journal of Mining and Geotechnical Engineering. 2019, no 3. Pp. 4—20. DOI: 10.26730/2618-7434-2019-3-4-20.

10. Strelnikov A. V. Typical faces passports for the development of coal-bearing zones of Kuzbass quarry fields with backhoes. Part 2. Passports of excavators faces. Journal of Mining and Geotechnical Engineering. 2019, no 4. Pp. 4—29. DOI: 10.26730/2618-7434-2019-4-4-29.

11. Katsubin A., Markov S., Khoreshok A., Tyluenev M. Selection of Excavating Equipment for the Outpacing Development of the Coal-bearing Zone. E3S Web of Conferences. 2020. Vol. 174. Article 01027.

12. Poderni R. Yu. The world market of deliveries of modern excavation and loading equipment for opencast mining. MIAB. Mining Inf. Anal. Bull. 2015, no 2, pp. 148—167. [In Russ].

13. Sytenkov V. N., Ganin A. R., Donchenko T. V., Shibanov D. A. Analysis of rope and hydraulic excavators applications in opencast mining. Ratsional'noe osvoenie nedr. 2014, no 3, pp. 30—37. [In Russ].

14. Anistratov K. Yu. Quarry excavators — hydraulics or rope? Ugol'. 2010, no 6, pp. 31—35.

15. Katsubin A. V., Fedotov A. A. Systematization of the mining and geological conditions of the coal-bearing and coal-free zones of the Kuzbass open pits. Journal of Mining and Geotechnical Engineering. 2019, no 3(6), pp. 60—75. DOI: 10.26730/2618-7434-2019-3-60-75.

16. Tyulenev M., Litvin O., Cehlar M., Zhironkin S., Gasanov M. Estimation of hydraulic backhoes productivity for overburden removing at Kuzbass Open Pits. Acta Montanistica Slovaca. 2017. Vol. 22. No 3. Pp. 296—302.

17. Dubinkin D. M., Sadovets V. Yu., Kotiev G. O., Kartashov A. V. Overburden and coal transportation research at open pit mines. Journal of Mining and Geotechnical Engineering. 2019. No 4. Pp. 50—66. DOI: 10.26730/2618-7434-2019-4-50-66.

18. Shestakov I. G., Kosykh S. V. Use of hydraulic excavators of the «backhoe» type in difficult mining and geological conditions. Vologdinskie chteniya. 2012, no 80, pp. 168—170. [In Russ].

19. Miliy S. M. Evaluation of technology for development of inclined and steep coal deposits in Kuzbass. Journal of Mining and Geotechnical Engineering. 2020, no 1, pp. 45—73. DOI: 10.26730/2618-7434-2020-1-45-73.

20. Litvin O., Makarov V., Strelnikov A., Tyuleneva E. Study of the Backhoe’s digging modes at rock face working-out. E3S Web of Conferences. 2019. Vol. 105. Article 01024.

21. Strelnikov A., Markov S., Rattmann L., Weber D. Theoretical features of rope shovels and hydraulic backhoes using at open pit mines. E3S Web of Conferences. 2018. Vol. 41. Article 01003.

22. Litvin O.I. Obosnovanie ratsional'nykh tekhnologicheskikh parametrov proizvodstva vskryshnykh rabot obratnymi gidravlicheskimi lopatami na razrezakh Kuzbassa [Justification of rational technological parameters of stripping operations by backhoes at Kuzbass open pits], Candidate’s thesis, Kemerovo, 2012, 119 p.

23. Frimpong S., Hu Y., Awuah-Offei K. Mechanics of cable shovel-formation interactions in surface mining excavations. Journal of Terramechanics. 2005. Vol. 42. No 1. Pp. 15—33.

24. Bhaveshkumar P. P., Prajapati J. M. Kinematics of mini hydraulic backhoe excavator. International Journal of Mechanisms and Robotic Systems. 2013. Vol. 1. No 4. Pp. 261—282.

25. Conigliaro R. A., Kerzhner A. A. and Paredis C. J. J. Model-based optimisation of a hydraulic backhoe using multi-attribute utility theory. SAE International Journal of Materials and Manufacturing. 2009. Vol. 2. No 1. Pp. 298—308. DOI: 10.4271/2009-01-0565.

26. Moore R., Paredis C. J. J. Variable fidelity modeling as applied to trajectory optimization for a hydraulic backhoe. Proceedings of ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. August 30 — September 2, 2009. San Diego. 2010. Vol. 5. Pp. 79—90. DOI: 10.1115/DETC2009-87522.

27. Zhang J.-R. Wang A.-L., Song S.-T., Cui D.-M. An analysis of trajectory in hydraulic backhoe excavators. Journal of North University of China (Natural Science Edition). 2011. Vol. 2. Article 007. DOI: 10.3969/j.issn.1673-3193.2011.02.007.

28. Nam B. X., Drebenstedt C. Use of hydraulic backhoe excavator in surface mining.International Conference on Innovative Entwicklung und Konzepte in der Tagebautechnik. Freiberg, TU Bergakademie. 2009. Pp. 175—189.

29. Strel'nikov A. V. Obosnovanie struktur sloevykh tekhnologicheskikh skhem razrabotki uglenasyshchennykh zon razrezov Kuzbassa obratnymi gidravlicheskimi lopatami [Justification of structures of layer technological schemes for mining of coal-bearing zones of Kuzbass open pits by backhoes], Candidate’s thesis, Kemerovo, 2012, 152 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.