Theoretical and practical key points of the tennantite-bearing sulfide ore flotation

The paper presents the results of the flotation studies of tennantite, chalcopyrite and sphalerite in the presence of thiosulfate-ions and collectors with different molecular structure. Based on the flotation activity, hydrotation, kinetics and thermodynamics of collector adsorption studies, the components of the M-TF collector (a mixture of thionocarbamate and dithiophosphate) provide the contrast for the tennantite and chalcopyrite flotation against the pyrite and sphalerite in the presence of thiosulfate-ions (0,3 g/l, pHin = 8); the higher adsorption rate constant of the butyl xanthate with pyrite doesn’t provide the selective tennantite flotation. The biggest difference in tennantite and pyrite surface hydotation, compared to butyl xanthate, is provided by ITC, diisobutyl dithiophosphate, M-TF. Transmission Electron Microscopy (TEM) confirms the presence of the collector film on the tennantite’s surface in the presence of 0,3 g/l thiosulfate-ions and doesn’t in the presence of 0,9 g/l thiosulfate-ions. Lab tests were performed on a tennantite-bearing pyrite copper-zinc ore. The refractivity of the ore sample is mainly caused by thin intergrowths of the targeted minerals, high content of the tennantite (84%) and by the presence of the highly active menlnikovite. Tennantite is floatable in a low alkaline medium, while chalcopyrite and secondary copper sulfides are floatable in a high alkaline medium in the presence of butyl xanthate. The reagent and scheme flotation regimes which were developed for tennantite-bearing pyrite copper-zinc ore. The regimes contain a staged selective extraction of open and free grains of copper sulfides (55—60% –0.071 mm class) into the inter-cycle of the copper flotation in low alkaline medium with M-TF and aeration (lowering melnikovite activity). The developed technology provided an increase of the copper extraction into the conditioned concentrate by 14% in comparison with butyl xanthate high alkaline calcareous medium.

Keywords: tennantite, chalcopyrite, pyrite, sphalerite, thiosulfate ions, collectors, flotation, contrast, technology, ore.
For citation:

Kayumov A. A., Aksenova D. D., Belokrys M. A., Malofeeva P. R. Theoretical and practical key points of the tennantite-bearing sulfide ore flotation. MIAB. Mining Inf. Anal. Bull. 2020;(5):148-163. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0-148-163.


The work is executed at financial support of the Russian Foundation for Basic Research (project no. 18-35-00213).

Issue number: 5
Year: 2020
Page number: 148-163
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236-1493-2020-5-0-148-163
Article receipt date: 06.02.2020
Date of review receipt: 23.03.2020
Date of the editorial board′s decision on the article′s publishing: 20.04.2020
About authors:

A.A. Kayumov1, Cand. Sci. (Eng.), Engineer, e-mail:,
D.D. Aksenova1, Graduate Student, Engineer, e-mail:,
M.A. Belokrys1, Master’s Degree Student, Engineer,
P.R. Malofeeva1, Graduate Student,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

A.A. Kayumov, e-mail:


1. Petrus H. T. B. M., Hirajima T., Sasaki K., Okamoto H. Separation mechanism of tennantite and chalcopyrite with flotation after oxidation using oxygen. 27th International Mineral Processing Congress. Chile. Santiago. 2014. Pp. 150—156.

2. Petrus H. T. B. M., Hirajima T., Sasaki K., Okamoto H. Effects of pH and dietil ditiophosphate (DTF) treatment on chalcopyrite and tennantite surfaces observed using atomic force microscopy (AFM). Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011. Vol. 389. Pp. 266—273.

3. Petrus H. T. B. M., Hirajima T., Sasaki K., Okamoto H. Effects of sodium thiosuphate on chalcopyrite and tennantite: An insight for alternative separation technique. International Journal of Mineral Processing. 2012. Vol. 102—103. Pp. 116—123.

4. Asbjornsson J., Kelsall G. H., Vaughan D. J., Pattrick R. A. D., Wincott P. L., Hope G. A. Electrochemical and surface analytical studies of tennantite in acid solution. Journal of Electroanalytical Chemistry. 2004. Vol. 570. Pp. 145—152.

5. Solozhenkin P., Ibragimova O., Emelyanenko E., Yagudina J. Current understanding of thiol collector adsorption mechanism on tennantite using computational docking and FTIR-techniques. 29th International Mineral Processing Congress. Moscow. 2018. Pp. 992—1003.

6. Bocharov V.A. Main ore flotation principles for refractory pyrite copper-zinc ores. Tekhnologiya obogashcheniya mednykh i mednotsinkovykh rud Urala. Pod red. V.A. Chanturiya, I. V. Shadrunovoy. Gl. 4. [Ore-dressing of the Ural’s copper and copper-zinc ores. Chanturiya V. A., Shadrunova I. V. (Eds.). Сhapter 4], Moscow, Nauka, 2016, pp. 150—184.

7. Yagudina Yu. R. Razrabotka i obosnovanie parametrov kombinirovannoy tekhnologii pererabotki tennantit-soderzhashchikh rud mednokolchedannykh mestorozhdeniy Urala [Development and justification of the parameters of a combined technology for processing tennantitecontaining ores of copper pyrite deposits in the Urals], Candidate’s thesis, Magnitogorsk, 2015, 165 p.

8. Xumeng Chen, Yongjun Peng, Dee Bradshaw The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding. Minerals Engineering. 2014. Vol. 58. Pp. 64—72.

9. Owusu C., Brito e Abreu S., Skinner W., Addai-Mensah J., Zanin M. The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Minerals Engineering. 2014. Vol. 55. Pp. 87—95.

10. Pshenichnyy G. N., Rykus N. G. Bleklye rudy Uchalinskogo i Novo-Uchalinskogo medno-tsinkovokolchedannykh mestorozhdeniy (Yuzhnyy Ural) [Fahl ores of the Uchalinsky and Novo-Uchalinsky copper-zinc pyrite deposits (South Ural)], Ufa, UfNTS RAN, 2001, 75 p.

11. Mozgova N. N., Tsepin A. I. Bleklye rudy (osobennosti khimicheskogo sostava i svoystv mineralov) [Fahl ores (features of the chemical composition and properties of minerals)], Moscow, Nauka, 1983, 216 p.

12. Dobrotsvetov B. L. Influence of compositional features of fahl ore minerals on their processing technology. Tsvetnye metally. 2009, no 7, pp. 19—22. [In Russ].

13. Koryukin B. M., Shtern E. K., Semidolov S. Yu. The relationship of the structure and composition of sulfides of pyrite deposits with the technology of their processing. Rol' tekhnologicheskoy mineralogii v razvitii syr'evoy bazy SSSR: Tezisy dokladov na sessii VMO [The role of technological mineralogy in the development of the raw material base of the USSR) Thesis], Leningrad, 1983.

14. Kopylov V. M., Bocharov V.A., Belyaev M. A. Theory and practice of aeration conditioning of pulp during flotation of copper-zinc ores. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 1981, no 1, pp. 90—93.

15. Bocharov V.A., Ignatkina V.A., Kayumov A. A. Fahl ore flotation. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2015, no 3, pp. 130—137. [In Russ].

16. Kayumov A. A. Aksenova D. D., Belokrys M. A., Malofeeva P. R. The effect of sodium thiosulfate on the floatability of tennantite and pyrite. Tsvetnye metally. 2019, no 3, pp. 7—12. [In Russ].

17. Yasemin Öztürk, Özlem Bıçak, Elif Özdemir, Zafir Ekmekçi Mitigation negative effects of thiosulfate on flotation performance of a Cu-Pb-Zn sulfide ore. Minerals Engineering. 2018. Vol. 122. Pp. 142— 147.

18. Fornasiero D., Fullston D., Li C., Ralston J. Separation of enargite and tennantite from non-arsenic copper sulfide minerals by selective oxidation or dissolution. Mineral Processing. 2001. Vol. 61. Pp. 109—119.

19. Yufan Mua, Yongjun Peng, Rolf A. Lauten The depression of pyrite in selective flotation by different reagent systems — A Literature review. Minerals Engineering. 2016. Vol. 96—97. Pp. 143—156.

20. Shen W. Z., Fornasiero D., Ralston J. Flotation of sphalerite and pyrite in the presence of sodium sulfite. International Journal of Mineral Processing. 2001. Vol. 63. Pp. 17—28.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.