Power quality improvement in operation of semiconductor frequency converter

Authors: Шевырев Ю. В.

Improvement of power quality by speed adjustment of asynchronous motors of mining machines and plants using frequency converters is discussed. Multi-pulse rectifies of frequency converters reduce voltage distortion at the connection point of the semiconductor frequency converter and electric main. The total rate of the harmonic voltage components are calculated for 6-pulse and 12-pulse rectifiers of frequency converters. The circuit of 12-pulse rectifies improves considerably the current path in the main of 6 kV as against 6-pulse circuit. The level of the higher harmonics noticeably influences the loss of power and voltage in the mine main. The highest power and voltage losses in the main are typical of 6-pulse rectifier. The connection of the semiconductor converters to the main via a special three-phase impedance coil weakens the cross-effect of the converters. The curves of the total rate of the harmonic voltage components on the line load with and without the coil are obtained. The mine mains with high content of higher harmonics need filtering and compensating devices. Given the rated voltage waveform distortion factor, simple capacitor assemblies with anti-resonance impedance coils are used. The anti-resonance impedance coils protect capacitor assemblies from higher harmonics and lower their level to an admissible value. For the control of the phase factor of the variable frequency drive, for the power interchange with the main and for generating the sinusoid current waveform, it is recommended to use active voltage rectifiers.

Keywords: variable frequency drive, power loss, voltage loss, total rate of harmonic voltage components, sinusoidal voltage waveform distortion, impedance coil, filtering and compensating device, active rectifier.
For citation:

Shevyrev Yu. V. Power quality improvement in operation of semiconductor frequency converter. MIAB. Mining Inf. Anal. Bull. 2020;(2):171-178. [In Russ]. DOI: 10.25018/0236-1493-20202-0-171-178.

Acknowledgements:
Issue number: 2
Year: 2020
Page number: 171-178
ISBN: 0236-1493
UDK: 621.314:622
DOI: 10.25018/0236-1493-2020-2-0-171-178
Article receipt date: 30.04.2019
Date of review receipt: 25.09.2019
Date of the editorial board′s decision on the article′s publishing: 20.01.2020
About authors:

Yu.V. Shevyrev, Dr. Sci. (Eng.), Professor, e-mail: uvshev@yandex.ru, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:
Bibliography:

1. Egorov A. N., Semenov A. S., Kharitonov Ya. S., Fedorov O. V. Efficiency of variable frequency drive in diamond mining. Gornyy zhurnal, no 2. 2019, pp. 77—82. [In Russ].
2. Kopylov K. N., Kubrin S. S., Reshetnyak S. N. Improvement of energy efficiency and safety in coal longwalls. Gornyy zhurnal, no 4. 2019, pp. 85—89. [In Russ].
3. Blagodarov D. A., Dulnev N. N., Safonov Y. M., Fedortsov N. N., Kostin A. A., Kryukov O. V. Intelligent control of electric machine drive systems. X International Conference on Electrical Power Drive Systems (ICEPDS). Novocherkassk, Russia, 3—6 Oct. 2018. DOI: 10.1109/ICEPDS.2018.8571670. 13.12.2018 IEEE Xplore Digital Library.
4. Suslov M. A., Churikov A. M., Shevyrev Yh. V. Improving electricity quality indicators in oil field networks. Trudy VIII Mezhdunarodnoy (XIX Vserossiyskoy) konferentsii po avtomatizirovannomu elektroprivodu AEP-2014. T. 2 [Proceedings of the VIII International (XIX all-Russian) conference on automated electric drive AEP-2014. Vol. 2], Saransk, Izd-vo Mordovskogo un-ta, 2014, pp. 177—182. [In Russ].
5. Milesevic B., Uglešić I., Filipovic-Grcic B. Power quality analysis in electric traction system with three-phase induction motors. Electric Power Systems Research. 2016. Vol. 138. Pp. 172—179.
6. Boudebbouz O., Boukadoum A., Medoued A. Effective electric power quantities and the sequence reference frame. A comparison study. Electric Power Systems Research. 2016. Vol. 140. Pp. 485—492.
7. Onishchenko G. B. Teoriya elektroprivod [Theory of electric drive], Moscow, OOO Obrazovanie i issledovanie, 2013, 352 p.
8. Shevyrev Yu. V., Shevyreva N. Yu., Plekhov A. S., Titov D. Yu. Primenenie komp'yuternykh modeley dlya vybora regulyatorov kachestva elektroenergii pri rabote elektroprivodov s poluprovodnikovymi preorazovatelyami [The use of computer models for the selection of electric power quality regulators when operating electric drives with semiconductor converters], Nizhniy Novgorod, NGTU im. R.E. Alekseeva, 2018, 180 p.
9. Dobrusin L. A. Fil'trokompensiruyushchie ustroystva dlya preobrazovatel'noy tekhniki [Filtercompensating devices for converting equipment], Moscow, NTF «Energoprogress», 2003, 84 p.
10. Zhezhelenko I. V. Vysshie garmoniki v sistemakh elektrosnabzheniya prompredpriyatiy [Higher harmonics in power supply systems of industrial enterprises], Moscow, Energoatomizdat, 1994, 264 p.
11. Ziad M. Ali, Faisal Q. Alenezi, Sameh S. Kandil, Shady H. E. Abdel Aleem Practical considerations for reactive power sharing approaches among multiple-arm passive filters in nonsinusoidal power systems. International Journal of Electrical Power & Energy Systems. 2018. Vol. 103. Pp. 660—675.
12. Shevyreva N. Yu. Influence on the quality of electric power of a step-down filter-compensating device when operating drilling rigs with variable-frequency electric drives. Gornyy informatsionno-analiticheskiy byulleten’. 2015, no 1, pp. 408—415. [In Russ].
13. Yoon John Motors, drives, and HVAC efficiency. Consulting — Specifying Engineer. 2016. No 1. Pp. 50—63.
14. Pollefliet J. Power electronics: drive technology and motion control. London: Academic Press, 2017. 412 p.
15. Kozyaruk A. E. Modern effective electric drives of production and transport mechanisms. Elektrotekhnika. 2019, no 3, pp. 33—37. [In Russ].

Mining World Russia
Subscribe for our dispatch