The effects of dolomite-gypsum bonded interfaces on acoustic properties and damage of rock under cyclic bending loads

The change in the elastic wave velocities Cp, Cs1, Cs2 and the acoustic quality factor Q of rock beams under cyclic bending loading are considered in the article. The specimen contained bonded dolomite-gypsum boundaries of complex structure. The number of loading cycles and damage parameter  were registered.The experiments were carried out on rock specimens from the Novomoskovsk gypsum field (Tula region, Russia) with bending by a three-point scheme. The upper part of the sample was mainly a layer of dolomite, which had higher strength, lower acoustic loss and higher acoustic quality factor compared to gypsum (which was located mainly in the lower part of the sample). The interface between dolomite and gypsum had a complex spotty texture with the alternation of both minerals. The experiment was carried out in a series of 100 load/unload cycles. The velocities of the longitudinal and transverse elastic waves (along and across the direction of loading), as well as the acoustic Q factor, were measured before and between cycles. The maximum load of the cycle in each subsequent series was increased in comparison with the previous series to find the mode of low cycle fatigue. The elastic wave velocities decreased and the acoustic Q factor increased with an increase in the number of fatigue cycles. Just before destruction, the Q factor showed a sharp decrease associated with the destruction of the matrix. Modeling by the finite element method confirmed the hypothesis that an increase in the quality factor is associated with a weakening of contacts at the boundaries between highquality dolomite and low-quality gypsum. The damage parameter  was estimated as the ratio of the total number of AE event count from the beginning of the experiment to the total number of AE event count at destruction. The accuracy of the regression dependencies of the damage parameter  by the acoustic properties is determined for various amounts.

Keywords: rock, bonded boundary, dolomite-gypsum, complex structure, acoustic, elastic waves, velocity, quality factor.
For citation:

Voznesenskii A. S., Krasilov M. N., Kutkin Ya. O., Tyutcheva A. O. The effects of dolomite-gypsum bonded interfaces on acoustic properties and damage of rock under cyclic bending loads. MIAB. Mining Inf. Anal. Bull. 2020;(7):27-44. [In Russ]. DOI: 10.25018/02361493-2020-7-0-27-44.

Acknowledgements:

This work was carried out under the auspices of the Russian Foundation for Basic Research (RFBR) – Russia, Grant No. 20-05-00341.

Issue number: 7
Year: 2020
Page number: 27-44
ISBN: 0236-1493
UDK: 552.541:552.08
DOI: 10.25018/0236-1493-2020-7-0-27-44
Article receipt date: 17.03.2020
Date of review receipt: 21.04.2020
Date of the editorial board′s decision on the article′s publishing: 20.06.2020
About authors:

A.S. Voznesenskii1, Dr. Sci. (Eng.), Professor, e-mail: al48@mail.ru,
M.N. Krasilov1, Graduate Student, e-mail: krasilov.maksim.93@mail.ru,
Ya.O. Kutkin1, Cand. Sci. (Eng.), Assistant Professor, e-mail: kutnew@mail.ru,
A.O. Tyutcheva1, Graduate Student, e-mail: 9295947810@mail.ru,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

A.S. Voznesenskii, e-mail: al48@mail.ru.

Bibliography:

1. Li W., Bai J., Cheng J., Peng S., Liu H. Determination of coal–rock interface strength by laboratory direct shear tests under constant normal load. International Journal of Rock Mechanics and Mining Science. 2015. Vol. 77. Pp. 60—67. DOI: 10.1016/j.ijrmms.2015.03.033.

2. Krautblatter M., Funk D., Günzel F. K. Why permafrost rocks become unstable. A rockice-mechanical model in time and space. Earth Surface Processes and Landforms. 2013. Vol. 38. Pp. 876—887. DOI: 10.1002/esp.3374.

3. Beysembaev K. M., Malybaev N. S., Tutanov S. K., Shmanov M. N. Longwall model for feedback control of powered roof support. Gornyi Zhurnal. 2019, no 8, pp. 38—43. [In Russ]. DOI. 10.17580/gzh.2019.08.07.

4. Stanchits S., Burghardt J., Surdi A. Hydraulic Fracturing of Heterogeneous Rock Monitored by Acoustic Emission. Rock Mechanics and Rock Engineering. 2015. Vol. 48. Pp. 2513— 2527. DOI: 10.1007/s00603-015-0848-1.

5. Zhong H., Ooi E. T., Song C., Ding T., Lin G., Li H. Experimental and numerical study of the dependency of interface fracture in concrete-rock specimens on mode mixity. Engineering and Fracture Mechanics. 2014. Vol. 124—125. Pp. 287—309. DOI: 10.1016/j.engfracmech.2014.04.030.

6. Carrubba P. Skin friction on large-diameter piles socketed into rock. Canadian Geotechnical Journal. 1997. Vol. 34. Pp. 230—240. DOI: 10.1139/t96-104.

7. Li Y., Liu W., Yang C., Daemen J. J. K. Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer. International Journal of Rock Mechanics and Mining Science. 2014. Vol. 69. Pp. 39—49. DOI: 10.1016/j.ijrmms.2014.03.006.

8. Mets Y. S. Study of blasting fatigue in rocks. Soviet Mining Science, 1983. Vol. 19. Pp. 37—42. DOI: 10.1007/BF02497962.

9. Mets Yu. S. Effect of blast load of varying intensity upon the resistance to mechanical destruction in strong magnetite quartzites. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 1982, no 3, pp. 58—61. [In Russ].

10. Labaune P., Rouabhi A. Dilatancy and tensile criteria for salt cavern design in the context of cyclic loading for energy storage. Journal of Natural Gas Science and Engineering. 2019. Vol. 62. Pp. 314—329. DOI: 10.1016/j.jngse.2018.10.010.

11. Kun G., Hailong L., Zhixin Y. In-situ heavy and extra-heavy oil recovery. A review. Fuel. 2016. Vol. 185. Pp. 886—902. DOI: 10.1016/j.fuel.2016.08.047.

12. Zaynagabdinov D. A., Bykova N. M. Transport tunnels and geodynamics of mountain ranges. Naukovedenie. Internet-zhurnal. 2014, no 5 (24). [In Russ]. Available at: http://naukovedenie.ru/PDF/13KO514.pdf.

13. Yang D., Zhang D., Niu S., Dang Y., Feng W., Ge S. Experiment and study on mechanical property of sandstone post-peak under the cyclic loading and unloading. Geotechnical and Geological Engineering. 2018. Vol. 36. Pp. 1609 – 1620. DOI: 10.1007/s10706-017-0414-6.

14. Cao A., Jing G., Ding Y., Liu S. Mining-induced static and dynamic loading rate effect on rock damage and acoustic emission characteristic under uniaxial compression. Safety Science. 2019. Vol. 116. Pp. 86—96. Available at: https://linkinghub.elsevier.com/retrieve/pii/ S0925753518318356.

15. Vinnikov V.A., Zakharov V. N., Malinnikova O. N., Cherepetskaya E. B. Analysis of structure and elastic properties of geomaterials using contact broadband ultrasonic structural spectroscopy. Gornyi Zhurnal. 2017, no 4, pp. 24—32. [In Russ].

16. Stoeckhert F., Molenda M., Brenne S., Alber M. Fracture propagation in sandstone and slate — Laboratory experiments, acoustic emissions and fracture mechanics. Journal of Rock Mechanics and Geotechnical Engineering. 2015. Vol. 7. No 3. Pp. 237—249. Available at: https://linkinghub.elsevier.com/retrieve/pii/S1674775515000475.

17. Rabotnov Yu. N. Vvedenie v mekhaniku razrusheniya [Introduction to fracture mechanics], Moscow, Nauka, 1987, 80 p.

18. Kachanov L. M. Osnovy mekhaniki razrusheniya [Fundamentals of fracture mechanics], Moscow, Nauka, 1974, 312 p.

19. Nikolenko P. V., Shkuratnik V. L., Chepur M. D. Acoustic emission effects in tension of composites and practical applications for roof control in underground mines. Gornyi Zhurnal. 2019, no 1, pp. 13—16. [In Russ]. DOI: 10.17580/gzh.2019.01.03.

20. Damaskinskaya E. E., Panteleev I. A., Gafurova D. R., Frolov D. I. Structure of a deformed inhomogeneous material on the data of acoustic emission and X-Ray computer microtomography. Physics of the Solid State. 2018. Vol. 60. No 7. Pp. 1363—1367. DOI: 10.1134/ S1063783418070077.

21. Tikhotskiy S. A., Fokin I. V., Bayuk I. O., Beloborodov D. E. Comprehensive core laboratory tests at TsPGI IPE RAS. Nauka i tekhnologicheskie razrabotki. 2017. vol. 96, no 2. С. 17— 32. [In Russ]. DOI: 10.21455/std2017.2-2.

22. Lebedev A. V., Ostrovskii L. A., Sutin A. M., Soustova I. A., Johnson P.A. Resonant acoustic spectroscopy at low Q factors. Acoustical Physics. 2003. Vol. 49. No 1. Pp. 81—87. DOI: 10.1134/1.1537392.

23. Voznesenskiy A.S., Krasilov M.N., Kutkin Ya.O., Tavostin M.N. Laboratory system for expanded bending tests of rock specimens. MIAB. Mining Inf. Anal. Bull. 2018, no 10, pp. 132– 137. [In Russ]. DOI: 10.25018/0236-1493-2018-10-0-132-137.

24. Ponomarev S. V., Rikkonen S. V., Azin A. V., Karavatskiy A. K., Maritskiy N. N., Ponomarev S. A. The use of acoustic emission method for modeling the durability of the metal elements of building structures. Perspektivnye materialy v stroitel'stve i tekhnike (PMST-2014). Materialy Mezhdunarodnoy nauchnoy konferentsii molodykh uchenykh [Advanced materials in construction and engineering (PMST-2014) Materials of the International Scientific Conference of Young Scientists], Tomsk, 2014, pp. 557—565. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.