УДК 622.862.7.012.3

А.В. Пичуев

ДИНАМИКА АВАРИЙНЫХ ОТКЛЮЧЕНИЙ В КАРЬЕРНЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ НАПРЯЖЕНИЕМ 6-10 КВ ЖЕЛЕЗОРУДНЫХ ПРЕДПРИЯТИЙ

Семинар № 21

ля анализа аварийных отключений в карьерной распределительной сети (КРС) необходимо исследование динамики этих процессов и установление зависимостей, позволяющих осуществить качественную и количественную оценку уровня надежности и безопасности эксплуатации карьерных электроустановок.

Динамика аварийных отключений тесно взаимосвязана с динамикой работы электроустановок в КРС (периодическое перераспределение нагрузки по фидерам, изменение числа распределительных линий по мере роста присоединенной нагрузки и расширения карьера, изменение конфигурации сети по фронту работ и т.д.) в течение времени (сутки, месяц, квартал, год). Поэтому для анализа динамики целесообразно использовать результаты численного спектрального (гармонического) анализа на основе дискретного преобразования Фурье.

Анализ распределения аварийных отключений в КРС-6 кВ Железногорского карьера по месяцам года (табл. 1.) показал, что общее число срабатываний устройств релейной защиты распределилось следующим образом: 61,9 % - защита от замыканий на землю (33H3); 21,3 % - максимальная токовая защита (МТ3); 7,5 % - защита от перегрузок (Пер.); 5,7 % - токовая отсечка (ТО); 1.2

% - сдвоенные срабатывания защит (33H3+MT3); 2,4 % - срабатывания прочих защит (дифференциальных, газовых, минимального напряжения и т.д.).

Распределение числа аварийных отключений в КРС-6 кВ Железногорского карьера по месяцам года

Анализ распределения аварийных отключений в КРС-10 кВ Железногорского карьера по месяцам года (табл. 2.) показал, что общее число срабатываний устройств релейной защиты распределилось следующим образом: 17,3 % - 33H3; 40,9 % - МТЗ; 38 % - ТО; 1,9 % - защита от перегрузок; 0,8 % - 33H3+МТЗ; 1,1 % - срабатывания прочих защит.

В связи с этим правомерным представляется вывод о том, что наиболее частыми являются аварийные отключения, повлекшие за собой срабатывание защит от однофазных замыканий на землю, максимальной токовой защиты и токовой отсечки. Анализ динамики таких аварийных отключений позволяет определить характер их распределения.

Численный спектральный анализ заключается в нахождении коэффициентов периодической функции на заданном временном интервале дискретными отсчетами [1]. В нашем случае вид периодической функции, характеризующей динамику аварийных

Таблица 1 Распределение числа аварийных отключений в КРС-6 кВ Железногорского карьера по месяцам года

Месяц	33Н3	МТЗ	то	Пер.	33H3 +MT3	Проч.	Итого
I	90	31	7	14	1	1	144
II	77	25	5	18	4	5	134
III	86	49	11	6	5	6	163
IV	103	20	10	7	-	6	146
V	73	40	10	10	2	2	137
VI	72	28	9	6	1	8	124
VII	78	34	11	12	2	3	140
VIII	52	22	3	3	-	3	83
IX	83	15	4	9	1	-	112
X	82	16	7	16	1	3	125
XI	85	25	5	7	1	-	123
XII	88	28	8	10	1	-	135
Итого	969	333	90	118	19	37	1566

Таблица 2 Распределение аварийных отключений в КРС-10 кВ Железногорского карьера по месяцам года

Месяц	33Н3	МТ3	то	Пер.	33H3 +MT3	Проч.	Итого
I	_	10	19	-	-	-	29
II	-	20	25	-	-	2	47
III	14	43	33	-	-	4	94
IV	15	43	33	2	-	-	93
V	13	21	33	1	4	-	72
VI	-	20	19	-	-	2	41
VII	24	37	41	4	-	-	106
VIII	3	31	25	-	-	-	59
IX	-	23	44	-	-	-	67
X	-	44	25	-	-	-	69
XI	13	54	41	1	-	-	109
XII	98	80	58	12	4	3	255
Итого	180	426	396	20	8	11	1041

отключений за определенный период времени, можно представить выражением

$$N_{oT} = a_0 + \sum_{i=1}^{T} (a_i \cos k_i t + b_i \sin k_i t), (1)$$

где N_{om} количество аварийных отключений, произошедших за период времени

T (сутки, год); k_i - номер гармоники; t - последовательный временной интервал (час, сутки), определяемый для циклических функций по формуле

$$t = \frac{2\pi \cdot (n-1)}{T},\tag{2}$$

Таблица 3 Уравнения динамики аварийных отключений в КРС-6 кВ

Вид защиты	Уравнение	${m \gamma}_{N,\overline{N}}$	σ
33Н3	$\overline{N}_{o\tau}$ = 80,75 +9,17 $\cos t$ +2,95 $\sin t$ 6,0 $\cos 2t$ -2,89 $\sin 2t$	0,7	8,4
МТЗ	\overline{N}_{or} = 27,75 +1,52 cos t +7,98 sin t + +2,67 cos 2t -1,44 sin 2t	0,65	7,12
ТО	$\overline{N}_{o\tau}$ = 7,5 -0,36 $\cos t$ +2,48 $\sin t$ 0,25 $\cos 2t$ -1,3 $\sin 2t$	0,75	1,17
Пер.	$\overline{N}_{o\tau} = 9.83 + 2.6 \cos t - 0.58 \sin t + 0.92 \cos 2t + 0.43 \sin 2t$	0,46	3,78
Все защи-	\overline{N}_{or} = 130,5 +12,7 cos t +16,2 sin t - -2,8 cos 2t -3,9 sin 2t	0,78	11,86

здесь n - номер временного интервала в цикле; a_0 , a_k , b_k - коэффициенты спектральной функции определяемые по формулам

$$a_{0} = \frac{\sum_{i=1}^{T} N_{OTi}}{T}; a_{k} = \frac{2 \sum_{i=1}^{T} (N_{OTi} \cos k_{i} t_{i})}{T};$$

$$b_{k} = \frac{2 \sum_{i=1}^{T} (N_{OTi} \sin k_{i} t_{i})}{T}.$$
(3)

Параметрами, определяющими взаимосвязь численных последовательностей статистического и аналитического рядов, приняты коэффициент взаимной корреляции $p_{N,\overline{N}}$ и стандартное отклонение σ , соответствующее среднеквадратичной погрешности (относительно аналитического ряда) [2].

Анализ зависимостей, представленных в табл. 3, показал, что в КРС-6 кВ максимальное количество аварийных отключений приходится на период с февраля по май и с сентября по декабрь. Наименьшее количество аварийных отключений приходится на период с июня

по сентябрь. Это в целом свидетельствует о сезонном характере распределения числа аварийных отключений в течение года. Вместе с тем, следует отметить, что динамика аварийных отключений, вызванных срабатыванием максимальной токовой защиты, токовой отсечки и защиты от перегрузки, указывает на существенное влияние технологических и эксплуатационных факторов.

Анализ зависимостей, представленных в табл. 4, показал, что в КРС-10 кВ максимальное количество аварийных отключений приходится на период с февраля по апрель и с сентября по декабрь. Наименьшее количество аварийных отключений приходится на февраль и на период с июля по август. Вместе с тем, следует отметить, что динамика аварийных отключений, вызванных срабатыванием максимальной токовой защиты и защиты от перегрузки, а также в целом для сетей данного класса напряжения может быть представлена в таком виде только в первом приближении. Об этом свидетельствуют низкие коэффициенты корреляции, явно выраженный

Таблица 4 Уравнения динамики аварийных отключений в КРС-10 кВ

Вид защиты	Уравнение	$r_{\scriptscriptstyle N,\overline{\scriptscriptstyle N}}$	σ
MT3	$\overline{N}_{o\tau}$ = 35,3 +7 cos t -8 sin t - -5,8 cos 2t -8,4 sin 2t	0,56	15
ТО	\overline{N}_{or} = 33 +1,7 cos t -4,7 sin t - -1,7 cos 2t -3,5 sin 2t	0,46	10,1
Все защи-	\overline{N}_{ot} = 86,8 + 21,7 cos t -16,3 sin t + +0,5 cos 2t -30,3 sin 2t	0,51	48,6

Таблица 5 Уравнения динамики аварийных отключений по времени суток

Сеть	Уравнение динамики	${m r}_{N,\overline N}$	σ
КРС-6 кВ	$\overline{N}_{o\tau}$ = 65,3 -14,1 $\cos t$ -19,7 $\sin t$ + +2,8 $\cos 2t$ +0,1 $\sin 2t$	0,87	9,48
КРС-10 кВ	\overline{N}_{or} = 43,4 -16,2 cos t -4,4 sin t + +3,0 cos 2t -0,3 sin 2t	0,81	8,1

случайный характер распределения, высреднеквадратическая погрешность результатов статистического и аналитического моделирования. Как и для КРС-6 кВ, динамика аварийных отключений в результате срабатывания МТЗ, ТО и защиты от перегрузки в значительной степени определяется технологическими и эксплуатационными факторами. В связи с этим наиболее правильным было предположить, что в математическом анализе данных процессов целесообразно представлять их не спектральными периодическими, спектральными непериодическими (финитными) функциями, т.е. функциями, полностью определенными на заданном интервале времени [3].

Сравнительный анализ распределения числа аварийных отключений в сетях напряжением 6 кВ и 10 кВ показал, что в последних число срабатываний защит от однофазных замыканий на

землю ниже в 5,4 раза, защит от перегрузки в 6 раз, сдвоенные срабатывания 33H3+МТЗ ниже в 2,5 раза. Это свидетельствует о том, что повышение класса напряжения КРС в целом благоприятно воздействует на устойчивость ее работы под нагрузкой.

В результате обработки статистических данных по распределению числа аварийных отключений по времени суток были получены уравнения динамики, приведенные в табл. 5. Анализ зависимостей показал, что наибольшее число отключений приходится на интервал времени 10.00-19 00 для КРС-6 кВ и интервал времени 10.00-17.00 для КРС-10 кВ. При этом общая тенденция снижения числа аварийных отключений в сетях характерна для интервала 20.00-8.00, т.е. приходится на вечернее и ночное время работы.

Анализ гармонических рядов (табл. 1 и табл. 2) в целом позволяет сделать вы-

вод о том, что динамика имеет сезонный характер, три этом наибольшее число аварийных отключений приходится на период с февраля по июнь и с сентября по декабрь. Это обусловлено ростом интенсивности ведения горных работ в указанный период времени, а также существенным влиянием климатических факторов (широкий диапазон колебаний температуры воздуха, атмосферное дав-

ление, повышенная ветровая нагрузка и т π)

Полученные в результате математического анализа зависимости могут быть положены в основу для определения и последующего анализа интерполирующих функций для построения прогнозных моделей, а также определения основных показателей надежности работы электроустановок в карьерных распределительных сетях.

СПИСОК ЛИТЕРАТУРЫ

- 1. Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. М.: Наука, 1981
- 2. Пугачев В.С. Теория вероятностей и математическая статистика. М.: Наука, 1979.
- 3. *Мацкевич И.П., Свирид Г.П.* Высшая математика. Теория вероятностей и математическая статистика. Минск: Высшая школа, 1993.

Коротко об авторах

Пичуев А.В. – Московский государственный горный университет.

ДИССЕРТАЦИИ

ТЕКУЩАЯ ИНФОРМАЦИЯ О ЗАЩИТАХ ДИССЕРТАЦИЙ ПО ГОРНОМУ ДЕЛУ И СМЕЖНЫМ ВОПРОСАМ

Автор	Название работы	Специальность	Ученая степень	
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ НАУЧНЫЙ ЦЕНТР ПО БЕЗОПАСНОСТИ РАБОТ В УГОЛЬНОЙ ПРОМЫШЛЕННОСТИ ВостНИИ				
АКСЕНОВ Геннадий Иванович	Разработка технологических схем проветривания при камерной системе отработки крутопадающих пластов Прокопьвско-Киселев-ского месторождения	05.26.03 25.00.22	к.т.н.	