УДК 519.24.003.13

Г.И. Газалеева

ТЕРМОАЭРОКЛАССИФИКАЦИЯ АСБЕСТОВОЙ РУДЫ

Семинар № 19

процесс сушки асбестовой руды имеет огромное значение для всей технологии обогащения асбеста. Основной метод обогащения асбеста — это извлечение волокон асбеста из дробленой руды с помощью воздуха. Для его осуществления необходимо высушить асбестовое волокно до влагосодержания в 1,6–1,8 %. Иначе воздух не будет поднимать асбест и произойдут значительные потери его с отходами. Исходная асбестовая руда имеет влагосодержание от 2 до 6 % в зависимости от погодных и горно-геологических условий.

На асбестообогатительных фабриках операция сушки асбестовой руды осуществляется после 4 стадии дробления ДСК. В нее направляется 49–65 % от общего количества исходной руды

На производстве №1 ОАО «Ураласбест» сушка асбестовой руды осуществляется в 12 вертикальных шахтных печах размером 2х2х18 м. Операция сушки является одной из наиболее затратных при обогащении асбеста. На сушку 1 т руды в среднем расходуется 2,3 м³ топлива (природного газа), 0,9 кВт электроэнергии и 30 тыс. м³/ч теплоносителя (воздуха). Тепловой К.П.Д. сушильной установки в целом составляет 42-53 %.

Изучение процесса сушки в 70-80 годы прошлого столетия [1, 2] показало преимущество комбинированного прямоточно-противоточного способа сушки. Однако, на производстве №1 ОАО «Ураласбест» до последнего времени используется в основном противоточный способ сушки.

Плотность распределения выходов, влажности и содержания асбеста в классах крупности и фракциях по скорости витания асбестовой руды, исходной на операцию сушки (сухая), %

Скорость	Классы крупности, мм					
витан. м/с	более 30	от 20 до 30	от 10 до 20	от 5 до 10	от 0,5 до 5	Менее 0,5
0-1,3	0	0	0	0	0,05	3,66
	0	0	0	0	0,7	0,6
	0	0	0	0	70,2	0,2
1,3-2,5	0	0	0	0	0,59	2,96
	0	0	0	0	0,8	0,8
	0	0	0	0	78,4	0,11
2,5-3,6	0	0	0	0	0,88	1,08
	0	0	0	0	0,8	0,9
	0	0	0	0	90,2	0,01
3,6-4,8	0	0	0	0,17	0,54	2,76
	0	0	0	1,6	0,7	0,8
	0	0	0	71	90,7	0
Более 4,8	8,11	15,8	22,5	16,4	18,06	6,44
	0,7	0,8	1	1,7	2,7	0,9
	0,01	0,12	0,25	1,7	0,4	0

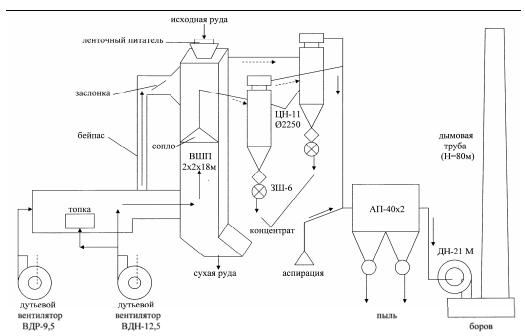


Рис. 1. Схема установки термоаэроклассификации

В 2001 году была проведена реконструкшия шахтной сушилки №1 с переходом на комбинированный режим. Задачей реконструкции было не только улучшить теплотехнические показатели сушки, но и преобразовать сушильную печь в обогатительный аппарат – термоаэроклассификатор. Предварительные исследования показали, что при значительном увеличении количества подаваемого в верхнюю часть сушилки воздуха через байпас выход чернового концентрата сушки увеличивается в 1,5 – 2 раза. На рис. 1 изображена модернизированная сушильная установка. От стандартных сушилок она отличается дополнительным соплом для отсоса сухого концентрата с 2/3 высоты шахты, вторым дутьевым вентилятором ВДН-12,5 для вторичного разбавления топочных газов и герметизированным ленточным питателем.

Для прогноза технологических показателей модернизированной сушилки как обогатительного аппарата и подбора воздушных режимов изучались скорости витании фракций сухой асбестовой руды — Vв, м/с. Предварительно руда, поступающая на сушку,

высушивалась до равновесного влагосодержания, классифицировалась на классы крупности +30, -30+20 мм, -20+10 мм, -10+5 мм, -5+0,5 мм и -0,5 мм. Каждый класс разделялся по скорости витания на парусном классификаторе в диапазоне скоростей витания -0-1,3 м/с; 1,3-2,5 м/с; 2,5-3,6 м/с; 3,6-4,8 м/c; $\geq 4,8 \text{ м/c}$. В каждой фракции определялось влагосодержание и содержание асбеста. То есть были построены плотности распределения: $\gamma = f(d, V_B)$; $w = f(d, V_B)$; $\beta =$ $f(d, V_B)$; где γ , w и β – соответственно выход, влагосодержание и содержание асбеста во фракциях; d - крупность класса, мм; Vв скорость витания фракции, м/с.В таблице приведена указанная средняя характеристика.

Цель построения и анализа данной характеристики — определить оптимальную (граничную) скорость витания асбестового волокна $V_{B_{rp}}$ в термоаэроклассификаторе при условии максимального выхода чернового концентрата $\gamma_{\text{ч.к}}$ и оптимальном содержании асбеста в нем - $\beta_{\text{кон опт}}$. Решалась система уравнений:

 $\beta_{\text{кон n}}$

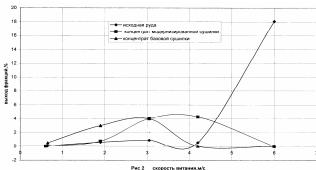


Рис. 2. Плотность распределения по скорости витания в классе 5-0,5 мм в сухой исходной руде и черновых концентратах базовой и модер-низированной сушилок

 $\begin{cases} & \gamma_{\text{\tiny H.K}} = \sum \gamma; \\ & \beta_{\text{\tiny KOH max}} \\ & \beta_{\text{\tiny KOH OHT}} \ge 14; \\ & V_{B_{TD}} = f\left(\beta_{\text{\tiny KOH}}\right); \end{cases}$

прети пределялось по экспериментальным зависимостям извлечения асбеста в конопит. Оптимальное содержание асбеста на фракциях. Граничное содержание асбеста — это содержание, получаемое при пошаговом суммировании п фракций, когда прибавление n+1 фракции приводит к изменению общего содержания концентрата ниже $\beta_{\text{конопт}}$. Оптимальное содержание асбеста в концентрате определялось по экспериментальным зависимостям извлечения асбеста и теплового КПД от содержания асбеста в черновом концентрате в точке их пересечения.

В результате решения уравнения была определена оптимальная скорость витания асбеста в термоаэроклассификаторе, которая составила 4,2 м/с (жирная линия в таблице). При этом прогнозируемый выход концентрата составил 12,8 %, содержание в нем асбеста - 14,01 %, влагосодержание - 0,7 %. Скорости витания частиц 4,2 м/с соответствует расход воздуха в верхнюю часть сушилки равный 20,6 тыс. м³/ч. Данный расход был

организован на практике путем фиксированного положения заслонки на байпасе.

На рис 2 изображены кривые $\gamma = f(d, V_B)$; $\beta_{\text{кон1}} = f(d, V_B)$

и $\beta_{\text{кон2}} = f(d, \text{VB})$ для класса крупности -5+0,5 мм, где $\beta_{\text{кон1}}$ и $\beta_{\text{кон2}}-$ выходы черновых концентратов в базовом и модернизированном сушильных аппаратах, полученные при сравнительных экспериментах. Из рис. 3 видно, что в базовой противоточной сушилке в черновой концентрат попадают наиболее легкие фракции. При этом средний выход концентрата составляет 7,1 %, содержание асбеста - 7,0 %, влагосодержание - 0,8 %. Для модернизированной сушилки эти показатели соответственно равны: - выход — 14,6 %, содержание асбеста — 12,2 %, влагосодержание 0,7 %.

Таким образом, с помощью прогноза показателей обогащения по комплексным кривым плотности распределения выходов и качества фракций в исходной руде были определены оптимальные параметры термоаэроклассификатора по количеству воздуха в верхнюю часть сушилки. Экспериментальным путем были подобраны оптимальные режимы по количеству воздуха на вторичное разбавление в топке (19,4 тыс. м³/ч) и производительности (240 т/ч). Это обеспечило тепловой КПД установки 71 %.

СПИСОК ЛИТЕРАТУРЫ

- 1. Сажин Б.С. Основы техники сушки. М., Химия, 1984,320 с.
- 2. Соколов А.А. Исследование закономерностей сушки асбестовых руд и разработка комбинированной сушильной установки, диссертация, УПИ, Свердловск, 1976, 187 с.

Коротко об авторах

 Γ азалеева Γ .V. — кандидат технических наук, ОАО «Ураласбест».