УДК 622.014.3:502.76

ТТ. Исмаилов, В.И. Голик, В.И. Комащенко ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ ХРАНЕНИЯ ХВОСТОВ ОБОГАЩЕНИЯ

роблема хранения хвостов приобрела особую актуальность с экологической точки зрения. На 1000 т хвостов отводится примерно 0,1 га площади в ряде случаев достаточно плодородной земли. Рекреационная способность природы уже не справляется с возрастающим количеством отходов, что приводит к деградации экосистем среды обитания. На Северном Кавказе проблема еще более обостряется расчлененностью рельефа и естественной изоляцией объектов. В районах деятельности рудников продукты деятельности хвостохранилищ намного превышают допустимые концентрации, а величина загрязнения приближается к критическому уровню.

Традиционные технологии управления массивами хвостохранилищ лишь частично предотвращают перенос минеральных частиц в экосистемы окружающей среды, а консервация хранилищ образованием защитного слоя снижает параметры загрязнения пылью, не уменьшая интенсивности физико—хи-мических процессов перерождения минералов в теле массивов.

Радикальным способом защиты экосистем является выщелачивание хвостов с утилизацией полезных продуктов переработки, однако реализация этой технологии – дело будущего.

Природоохранные технологии управления хвостохранилищами выбираются на основе эколого-экономической моде-ли, целевой функцией которой является максимум прибыли, а ограничивающими условиями - соотношение компенсационных

затрат и ущерба от хранения отходов, мощности и технологического уровня предприятия.

Традиционные технологии упрочнения поверхности хвостохранилищ: глиной, цементом, силикатами, битумом, посевом травы и комбинированные позволяют несколько уменьшить темпы физического разрушения массива и переноса минеральных частиц в экосистемы окружающей среды. Прочность закрепления достигает 0.5 МПа, что достаточно для предотвращения запыления среды. При этом возникают сложности при необходимости утилизации отходов.

В качестве альтернативы традиционным способам нами рекомендована новая технология, включающая предварительную геохимическую подготовку хвостов к консервации; консервацию за счет искусственного образования изолирующих сред из самих хвостов и контролируемое изменение состояния хвостов.

Применение доломитов и извести улучшает прочность верхнего слоя массива хвостов. В нижнем слое образуется материал, прочность которого не уступает прочности верхнего слоя и сравнима с прочностью слабой бетонной смеси. Прочность же закрепления в результате выщелачивания обеспечивает сохранность массива от физического разрушения природными явлениями с большим эффектом, чем традиционными способами.

Для условий Садонских месторождений характерно, что при увеличении окислительно-восстановительного потенциала среды происходит гидролиз сульфатов. Активированные горно-обо-гатительными процессами хвосты подвергаются выщелачиванию атмосферными осадками.

Для определения закономерностей этого влияния выполнен эксперимент, включающий измерение содержания ингредиентов в растворах, проникающих из хвостохранилищ на уровне почвы, в трех станциях по периметру Унальского хвостохранилища, в котором складируются отходы обогащения Мизурской фабрики.

Колебания показателей оказались закономерными: с уменьшением дебита стоков зимой содержание металлов в растворах увеличивается.

Традиционные способы управления хранилищами на состояние среды влияют не значительно. Концентрация ме-таллов здесь превышает ПДК по свинцу в 40-50 раз, по цинку в 500-600 раз.

По результатам эксперимента сделаны выводы: консервация хвостохранилищ покрытием снижает только параметры загрязнения пылью, а на параметры загрязнения окружающей среды металлами не влияет; основная цель консервации хвостохранилищ - подготовка хвостов для переработки в будущем.

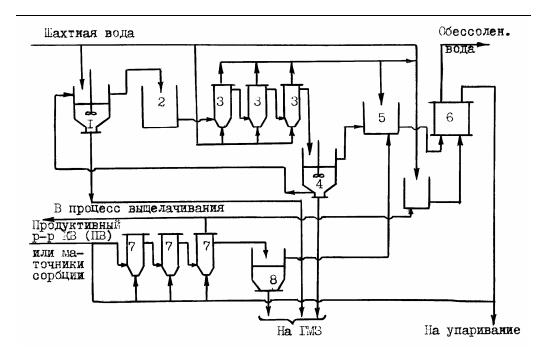
Хвостохранилище следует рассматривать как техногенное месторождение с низким содержанием полезных компонентов и высоким содержанием вред-ных примесей, измельченное, окислен-ное и труднообогатимое. Консервация и хранение хвостов экологически корректно до тех пор, пока техногенное возмущение экосистемы не превысит уровня, при котором биота еще сохраняет способность к самовосстановлению после снятия техногенной нагрузки.

На практике реализуется один из вариантов управлением хвостохранилищем:

• паллиативный - упрочнение массива с предотвращением физического уноса минеральных частиц за пределы храни-

лища и нанесением окружающей среде ущерба выносом загрязнителей в среду в процессе природного выщелачивания;

• оптимизированный - переработка хвостов с утилизацией продуктов в хозяйстве и гарантированной безопасностью экосистем среды.


Для условий Садонского СЦК управление хвостами по безотходной технологии обеспечивает прибыль, сравнимую с показателями его сегодняшнего основного производства.

Одной из основных проблем является опасность вытекающих из хвостохранилища стоков. Попытки нейтрализации стоков до норм ПДК пока еще единичны.

К технологиям очистки промышленных стоков предъявляются требования: минимальное использование химических реагентов; простота, надежность и обеспеченность оборудованием; отсутствие отходов; пригодность дилюата к использованию.

По результатам лабораторных и полупромышленных экспериментов разработана малоотходная технологическая схема (рисунок), освоенная в свое время на урановом месторождении «Шокпак» в Северном Казахстане.

Шахтная вода поступает в сгуститель 1, куда подается щелочная пульпа первой стадии электрохимической обработки вод. Верхний слив сгустителя поступает в емкость – накопитель 2 и затем – на стадию электрохимической обработки шахтных вод 3. Щелочной католит с осадком выводится в отстойник 4, откуда пульпа гидроксидов и карбонатных солей откачивается в сгуститель 1. Анодные камеры электролизеров промываются шахтной водой, которая после обработки вместе с католитом поступает в емкость - нейтрализатор 5. Нейтральный раствор поступает на стадию электродиализного обессоливания и одновременного концентрирования растворов 6. Вода и рассолы после анодных камер электролизеров 7, с pH 1-2 и Eh 1000 мВ могут быть использованы в про-

Технологическая схема очистки загрязненных вод

цессах выщелачивания металлов из руд. Продуктивный раствор выщелачивания обрабатывается в катодных камерах электролизеров 7 с целью осаждения в отстойнике δ целевого компонента в виде концентратов с солями металлов. Избыток получаемых рассолов может быть выпарен, так как в рассоле практически отсутствуют соли жесткости.

В условиях Архонского рудника (РСО-Алания) получены параметры очистки:

- производительность установки по исходной воде $-60 \text{ m}^3/\text{ч}$.
- свойства шахтной воды: pH- 7,56; \mathcal{H}_{o} -28,4 мг-экв/дм³; ОВП 300 мВ; температура 6 0 C; Nа⁺ + K⁺ 1271 мг/дм³; СГ 1643,7 мг/дм³; Са²⁺ 268 мг/дм³; SO₄²⁻ 29,4 мг/дм³; Mg²⁺-182,1 мг/дм³; NO₃-н/о; Fe н/о; NO₂⁻ 0,06 мг/дм³; NH₄⁺ 0,4 мг/дм³; CO₃²⁻ 31,5 мг/дм³; Ме- 4,6 мг/дм³; HCO₃⁻ 148,2 мг/дм³; общая минерализация 5 г/дм³.

Загрязненная вода, например, шахтная, с механическими примесями посту-

пает в сборник, откуда насосом подается в пластинчатый сгуститель. В сгуститель после электрохимического умягчения и осветления католита поступает и осадок солей: гидроксиды кальция и магния при соотношении Т:Ж =1:10. В сгустителе за счет гидроксидов кальция и магния происходит осаждение металла.

Состав осадка для архонских вод Са- ${\rm CO_3-81~\%}$, Mg (OH)₂ – 14 %. За счет этого жесткость исходной воды снижается с 28,4 мг-экв/дм³ до 10, а солесодержание снижается с 5 до 4 г/дм³. Анолит из аппаратов АЭХУ-8 подвергается контрольной фильтрации для очистки от твердых взвесей размером более 5 микрон. Очищенный от твердых взвесей анолит с солесодержанием 4 г/дм³ поступает в сборник, а оттуда на обессоливание в электродиализаторы.

Электродиализное обессоливание производится в каскаде из 4-х электродиализаторов по прямоточной схеме в аппаратах типа ЭДШ-60 с характеристикой: размер мембран -1500х1000 мм; рабочая площадь мембран - 1,32 м²; тол-

щина мембран - 0.6 мм; расстояние между мембранами -0.8 мм; количество парных ячеек -300; напряжение тока на парную ячейку-1.0 вольт.

Деминерализованная вода — дилюат из ячеек электродиализаторов выводится с солесодержанием до 1 г/дм³, а минеральные соли удаляются из рассольных ячеек в виде рассола с концентрацией солей 15 %.

Для архонского месторождения технологические параметры деминерализации шахтной воды: сила тока 135 ампер; напряжение тока 300 вольт; выход по току 80 %; съем соли за проход 35 %; остаточное солесодержание до 1 %; выход очищенной воды 80 %; выход рассола 20 %; солесодержание рассола 15 %.

Коротко об авторах

 $\it Исмаилов \ T.T.-$ кандидат технических наук, профессор, Московский государственный горный университет,

Голик В.И. – доктор технических наук, профессор, Северо-Кавказский государственный технологический университет,

Комащенко В.И. – доктор технических наук, профессор, Российский государственный геологоразведочный университет.

ДИССЕРТАЦИИ

ТЕКУЩАЯ ИНФОРМАЦИЯ О ЗАЩИТАХ ДИССЕРТАЦИЙ ПО ГОРНОМУ ДЕЛУ И СМЕЖНЫМ ВОПРОСАМ

Автор	Название работы	Специальность	Ученая степень
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ УНИВЕРСИТЕТ			
МЕЛЬНИК Владимир Васильевич	Разработка технологических решений скважинной гидравлической добычи угля	25.00.22	д.т.н.
МИНДУБАЕВА Евгения Наильевна	Обоснование рациональной технологической схемы угольной шахты по критерию трудоемкости работ	25.00.21	К.Т.Н.
РОДИН Алексей Вячеславович	Экономическое обоснование программ развития региональных комплексов золотодобывающей промышленности	08.00.05	к.э.н.

© ТТ. Исмаилов, В.И. Голик, В.Г. Герасименко, 2005

ТТ. Исмаилов, В.И. Голик, В.Г. Герасименко ГЕОДИНАМИЧЕСКИЕ ФАКТОРЫ СТРОИТЕЛЬСТВА ГОРНЫХ ОБЪЕКТОВ

В результате техногенного вторжения в природу в горных породах, вмещающих строящиеся объекты, возникают зоны деформации, контролирующие состояние массивов пород и земной поверхности. Техногенные изменения состояния массивов можно разделить на обратимые, когда первоначальное состояние восстанавливается со временем, и необратимые, когда восстановления вследствие релаксации не происходит.

Помимо отторжения земель из сферы пользования существует целый ряд техногенных воздействий на окружающую среду: сдвижение массива горных пород; оседание поверхности; снос пород и почвы со склонов гор; рассеяние загрязняющих веществ с комплексной деградацией земельных ресурсов. Состав почв в районах технологического воздействия изменяется как при прямом физическом воздействии, так и вследствие дезинтеграции минералов воздушными и водными потоками, а также в результате последующего химического преобразования.

Многочисленными исследованиями однозначно установлено наличие коррелятивной связи между горными работами и геодинамическими явлениями в земной коре, например, техногенные землетрясения и горные удары.

Все без исключения виды техногенного воздействия сопровождаются физическим разрушением окружающей среды с изменениями гидрогеологических условий региона, перемещением пород по вертикали и горизонтали, выносом на дневную поверхность растворенных в воде минералов, радикальным изменением количества и качества биоты и т.д.

Республики Северного Кавказа обладает развитой рекреационной инфраструктурой, множеством курортов и неисчерпаемыми запасами ценных и востребованных минеральных ресурсов. Освоение богатств недр сопряжено с решением сложнейших экологических проблем, связанных с нагорным положением регионов Кавказа. Горные массивы радикально контролируют пути миграции водных, газовых и пылеводяных потоков, поэтому загрязнители - продукты промышленного производства оказываются в акваториях рек и питают все регионы Кавказа, Каспия и Юга России.

Геодинамическими явлениями в земной коре инициируются крупные природные катаклизмы. Так, 20 сентября 2002 г. в Кармадонском ущелья с высоты 4 тыс. м сошел ледник Колка объемом более 150 млн м ³ и высотой более 100 м. Стены ущелья были срезаны на глубину до 100 м. Поселок Гизель с населением 15 тыс. жителей спасло от разрушения лишь резкое сужение ущелья на пути следования ледника. Остановившийся ледник образовал новый геологический массив длиной до 33 км и шириной 400 м.

Геодинамические причины аналогичного схода ледников проводились многими исследователями, потому что Северный Кавказ признан одним из наиболее опасных регионов России с точки зрения вулканизма и сопутствующих ему явлений: гравитационные склоновые процессы, лавовые потоки и т.п.

Большая часть опасных геологических процессов сосредоточена в пределах участка площадью около 100 км² на пересечении долины р. Ардон с Боковым хребтом, где проходит Транскавказская авто-

мобильная дорога и ее коммуникации. Только оцениваемый по применяемым методикам ущерб дорогам от природных явлений достигает 100 млн руб./год.

Инструментальными наблюдениями зарегистрированы неоднократные смещения пород на Лаурском, Зинцарском, Урсдонском, Н. Цейском, Даллагкауском, Мацутинском и Донифарсском участках. Сохраняется активность опас-ных геологических процессов в Моздокском, Правобережном и Кировском районах.

Продолжается развитие обвальнооползневых процессов в уступах террас рек Терек и Курп в районе с. Сухотское, где зафиксировано появление трещин бортового отпора, и смещение кромки эрозионного уступа со скоростью от 1,2 до 4,5 м/год.

Активизировались оползневые процессы на южном склоне Сунженского хребта, в районе автодороги Владикавказ-Моздок, где дороги нередко разрушаются на участках длиной в сотни метров. Установлено, что причиной деформаций является подрезка склона при строительстве автодорог.

Основные направления исследований ученых Северного Кавказа и РСО-

Алания в области охраны окружающей среды от негативного влияния строительства включают:

• геодинамический мониторинг вулканических центров региона Эльбруса и Казбека;

- изучение сдвижений склонов в районах добычи ископаемых и строительства объектов;
- прогнозирование сохранности земной поверхности под влиянием геологических разломов;
- организация мониторинга состояния ледников и прогноза их сдвижения;
- оценка устойчивости строящейся плотины Зарамагской ГЭС в зоне влияния разлома.

От успешного научного обеспечения проблем охраны окружающей среды при освоении горных регионов, в том числе строительства горных объектов зависят все без исключения экономические, социальные и экологические показатели жизнедеятельности регионов Северного Кавказа, тем более, что темпы воздействия на окружающую среду с уменьшением объемов промышленного производства не снижаются, а уже сделанных ошибок и накопленных отходов в ходе научнотехнологической революции достаточно для жизни не одного поколения населения Северного Кавказа.

Основной задачей управления состоянием массивов пород и земной поверхности в ходе техногенного вторжения в природу становится максимальный учет геодинамических факторов строительства горных объектов.

Коротко об авторах

Исмаилов Т.Т. – кандидат технических наук, профессор, Московский государственный горный университет,

Голик В.И. – доктор технических наук, профессор, Северо-Кавказский государственный технологический университет,

 Γ ерасименко $B.\Gamma$. – кандидат технических наук, доцент, Северо-Кавказский государственный технологический университет.