The microelement analysis of oils is a science-and-technology problem of current concern. Ratios of some microelements in oils provide information on the oil nature, age, migration and, often, govern development strategy selected for an oil reservoir. On the other hand, some microelements, even if present in small quantities, can essentially damage processing equipment, induce corrosion and breakdown of basic assemblies of oil refineries, poison catalytic agents and impoverish quality of marketable products. Furthermore, some compounds of microelements belong to highly toxic substances which are hazardous for the ecology and health while their emissions in the atmosphere greatly complicate environmental situation in oil production regions. The microelement analysis of oil is carried out using chemical, physical and nuclear physics methods. Amongst the nuclear physics methods, the neutron activation analysis using nuclear reactors find the most often application. The advantage of this method is high sensitivity and feasible determination of many elements in a sample at the same time. The disadvantages can be described as the need of oil sample calcination and the presence of cooled channel of the reactor, which limits the analysis of crude oil samples. The authors of this article discuss applicability of the neutron activation analysis of oil elements using plants based on powerful neutron sources. A stibate–beryllium source (124Sb-Be) with the neutron yield of 1010 n/s was used as a source. Oil samples were placed in a slot between beryllium and graphite, in polyethylene cartridges with a capacity of 800–900 g. Exposed samples were processed on spectrometer facility based on semi-conductor Ge(Li) detector in special cartridges tightly put on the protection enclosure of the detector. The choice of the analysis times (periods of exposure, cooling and measurement) is governed by the required sensitivity, productivity and oil composition. The determination limits are obtained for 10 microelements based on long-lived isotopes in oil.


Oil microelements, neutron activation analysis, stibate—beryllium neutron source, semi-conductor detector, measurement time, exposure time, cooling time, determination limits.

Issue number: 11
Year: 2018
UDK: 550.83
DOI: 10.25018/0236-1493-2018-11-0-121-128
Authors: Medvedev A. A., Poserenin A. I., Romanov V. V.

About authors: Medvedev A.A., Candidate of Technical Sciences, Professor, e-mail: medvedev747@yandex.ru, Moscow State University of Civil Engineering, Moscow, Russia, Poserenin A.I. (1), Senior Lecturer, e-mail: poserenin83@gmail.com, Romanov V.V. (1), Candidate of Technical Sciences, Assistant Professor, e-mail: roman_off@mail.ru, 1) Russian State Geological Prospecting University named after Sergo Ordzhonikidzе (MGRI-RSGPU), 117997, Moscow, Russia.


1. Gottikh R. P., Pisotskiy B. I., Plotnikova I. N. Informativnost' malykh elementov v neftyanoy geologii [The informative value of small elements in petroleum geology], Georesursy. 2012, vol. 5, no 47, pp.  24—31. [In Russ].

2. Lur'e M. A., Glubinnaya neft'. 2014, vol. 2, no 7, pp.  175. http://journal.deepoil.ru/images/stories/docs/DO-2-7-2014/4_Lurje_2-7-2014.pdf (21.08.2018).

3. Kolodyazhnyy A. V., Koval'chuk T. N., Korovin YU. V., Antonovich V. P. Opredelenie mikroelementnogo sostava neftey i nefteproduktov. Sostoyanie problemy (Obzor) [Definition of microelement composition of oil and oil products. State of the problem (a Review)], Metody i ob"ekty khimicheskogo analiza. 2006, vol. 1, no 2, pp. 90—104. [In Russ].

4. Yashchenko I. G. Tyazhelye vanadievonosnye nefti Rossii [Heavy vanadium bearing oils of Russia], Izvestiya Tomskogo politekhnicheskogo universiteta. 2012, vol. 321, no 1, pp. 105—111. [In Russ].

5. Maryutina T. A., Katasonova O. N., Savonina E. Yu., Spivakov B. Ya. Sovremennye sposoby opredeleniya mikroelementov v nefti i ee otdel'nykh fraktsiyakh [Modern methods of trace elements determination in crude oil and its individual fractions], Zhurnal analiticheskoy khimii. 2017, vol. 72, no 5, pp.  417—436. [In Russ].

6. Khadzhiev S. N., Shpirt M. Ya. Mikroelementy v neftyakh i produktakh ikh pererabotki [Trace elements in oils and products of their processing], Moscow, Nauka, 2012, 222 p.

7. Sanchez R., Todoli J. L., Lienemann C-P., Mermet J-M. Determination of trace elements in petroleum products by inductively coupled plasma techniques: a critical review, Spectrochim. Acta B. 2013. Vol. 88. P. 104—126.

8. Manar El-Sayed Abdul-Raouf. Сrude oil emulsions-composition stability and characterization. Rijeka: InTech, 2012. 230 p.

9. Silva M. M., Damina I. C.F., Vale M. G.R., Welz B. Feasibility of using solid sampling graphite furnace. atomic absorption spectrometry for speciation analysis of volatile and non-volatile compounds of nickel and vanadium in crude oil, Talanta, 2007. Vol. 71. P. 1877—1885.

10. Dittert I. M., Silva J. S.A., Araujo R. G.O, Curtius A. J., Welz B., Becker-Ross H. Direct and simultaneous determination of Cr and Fe in crude oil using high-resolution continuum source graphite furnace atomic absorption spectrometry, Spectrochim. Acta B. 2009. Vol. 64. P. 537—543.

11. Brandao G. P., Campos R. C., Castro E. V.R., Jesus H. C. Determination of copper, iron and vanadium in petroleum by direct sampling electrothermal atomic absorption spectrpmetry, Spectrochim. Acta B. 2007. Vol. 62. P. 962—969.

12. Vieira L. V., Rainha K. P., de Castro E. V.R., Filqueiras P. R., Carneiro M. T.W.D., Brandao G. P. Exploratory data analysis using API gravity an. V and Ni contents to determine the origins of crude oil samples from petroleum fields in the Espírito Santo Basin (Brazil), Microchem. 2016. Vol. 124. P. 26—36.

13. Margue E., Zawisza B., Sitko R. Trace and ultratrace analysis of liquid samples by X-ray fluorescence spectrometry, Trends Anal. Chem. 2014. Vol. 53. P. 73—83.

14. Medvedev A. A., Poserenin A. I. Laboratornyy praktikum po yadernoy geofizike [Laboratory workshop on nuclear geophysics], Moscow, 2013.

15. Doyle A., Saavedra A., Tristao M. L.B., Aucelio R. Q. Determination of S, Ca, Fe, Ni and V in crude oil by energy dispersive X-ray fluorescence spectrometry using direct sampling on paper substrate, Fuel. 2015. Vol. 162. P. 39—46.

16. Bobrov V. A. K voprosu analiza mikroelemetov v neftyakh (neytronno-aktivatsionnym metodom) [Analysis mikroelementov in oils (neutron activation method)], Fizicheskie metody analiza v geokhimiiCollection of scientific papers. Novosibirsk, 1978, pp.  97—103.

17. Shah K. R., Filby R. H., Haller W. A. Determination of trace elements in petroleum by neutron activation analysis, Radioanalytical chemistry. 1970. Vol. 6. Р. 185—192.

18. Poserenin A. I., Medvedev A. A. Analiticheskie metody opredeleniya sostava gornykh porod [Analytical methods to determine the composition of rocks], Moscow, 2011.

19. Filby R. H., Olsen S. P. A comparison of instrumental neutron activation analysis and inductively coupled plasma-mass spectrometry for trace element determination in petroleum geochemistry, J. Radioanal. Nucl. Chem. Art. 1994. Vol. 180. No 2. P. 285—294.

20. Olsen S. D., Fibly R. H., Brekke T., Isaken G. Determination of trace elements in petroleum exploration samples by inductively coupled plasma mass spectrometry and instrumental neutron activation analysis, Analyst. 1995. Vol. 120. P. 1379—1390.

21. Paola A. Mello, Juliana S. F. Pereira, Marsia F. Mesko, Juliano S. Barin, Erico M. M. Flores. Sample preparation methods for subsequent determination of metals and non-metals in crude oil. A review, Anal. Chim. Acta. 2012. 746. P. 15—36.

22. Flerov G. N., Burmistenko Yu. N., Dyadin Yu. V., Medvedev A. A. O perspektivakh razvitiya neytronno-aktivatsionnykh ustanovok na baze moshchnykh sur'myano-berillievykh istochnikov [Prospects for the development of analytical arrangement for neutron activation analysis based on antimony-beryllium sources of high intensity], Atomnaya energiya. 1982, vol. 53, pp.  255.

23. Medvedev A. A., Poserenin A. I. Neytronnyy aktivatsionnyy analiz gornykh porod na skandiy s primeneniem ustanovok na baze moshchnykh nuklidnykh istochnikov neytronov [Neutron activation analysis of scandium in rocks using installations based on powerful nuclide sources of neutrons], Gornyy informatsionno-analiticheskiy byulleten’. 2017, no 12, pp.  170—175. [In Russ]. DOI: 10.25018/0236-1493-2017-12-0-170-175.

24. Neft' i nefteprodukty. Metod opredeleniya vanadiya. GOST 10354-90 [Oil and petroleum products. Method for determination of vanadium. State Standart 10354-90], Moscow, Standartinform, 2006, 7 p.

25. UOP 389-15 Trace Metals in Organics by ICP-OES. UOP LLC: A Honeywell Company, 2015. 13 p.

26. ASTM D5708-15 Standard test methods for determination of nickel, vanadium, and iron in crude oils and residual fuels by inductively coupled plasma (ICP) atomic emission spectrometry. West Conshohockm, PA: American Society for Testing and Materials, 2015. 9 p.

27. Romanov V. V., Poserenin A. I., Mal'skiy K. S. Metrologiya, standartizatsiya i sertifikatsiya [Metrology, standardization and certification], Moscow, 2015.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.