Back to search

Efficiency of a new ventilation method for a tilted block in an oil mine

The article discusses the mathematical modeling results on the structure of ventilation flows in a tilted block in an oil mine to design and justify a new ventilation method. This method consists in separate ventilation of a work zone (hot zone), heated incessantly by hightemperature rock mass (oil reservoir), and the rest, colder portion of the underground opening. The separation is achieved by means of setting an airtight and insulating partition lengthwise the whole drilling gallery. The heated air is let out not to the common ventilation network of the oil mine but via a vertical ventilation well and to ground surface. The mathematical model describes the 3D stationary turbulence and heat transfer by differential equations with partial derivatives of a semi-empirical model of the type of SST k-. The problem is solved in ANSYS Fluent using the method of double-sided wall (meant for modeling detached air flows on both sides of the partition). The numerical modeling results have fully proved the efficiency and the prospects of the proposed ventilation method: the drilling gallery provides admissible operating environment (microclimate), and heated air which can worsen the microclimate is removed via the ventilation well to ground surface. The generated natural draught contributes to fast removal of heated air, which improves ventilation of the tilted block and the whole oil mine.

Keywords: oil mine, drilling gallery, work environment, ventilation method, energy efficiency, natural draught, mathematical modeling, numerical methods.
For citation:

Nikolaev А. V., Maksimov P. V., Fajnburg G. Z., Konotop D. А. Efficiency of a new ventilation method for a tilted block in an oil mine. MIAB. Mining Inf. Anal. Bull. 2023;(5):83-98. [In Russ]. DOI: 10.25018/0236_1493_2023_5_0_83.

Acknowledgements:

The study was supported by the Ministry of Science and Higher Education of the Russian Federation within the Perm Global-Level Science and Education Center’s Efficient Subsoil Management Program.

Issue number: 5
Year: 2023
Page number: 83-98
ISBN: 0236-1493
UDK: 681.5
DOI: 10.25018/0236_1493_2023_5_0_83
Article receipt date: 28.01.2022
Date of review receipt: 13.02.2023
Date of the editorial board′s decision on the article′s publishing: 10.03.2023
About authors:

А.V. Nikolaev1, Dr. Sci. (Eng.), Assistant Professor, e-mail: nikolaev0811@mail.ru, ORCID ID: 0000-0002-4601-5780,
P.V. Maksimov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: pvmperm@mail.ru, ORCID ID: 0000-0002-3617-5617,
G.Z. Fajnburg1, Dr. Sci. (Eng.), Professor, e-mail: faynburg@mail.ru, ORCID ID: 0000-0001-8004-1969,
D.А. Konotop1, Graduate Student, e-mail: konotopda@gmail.com, ORCID ID: 0000-0001-8004-1969,
1 Perm National Research Polytechnic University, Perm, 614990, Russia.

 

For contacts:

А.V. Nikolaev, e-mail: nikolaev0811@mail.ru.

Bibliography:

1. Konoplev Yu. P., Buslaev V. F., Yagubov Z. Kh., Tskhadaya N. D. Termoshakhtnaya razrabotka neftyanykh mestorozhdeniy [Thermal mine development of oil fields], Moscow, NedraBiznestsentr, 2006, 288 p.

2. Chertenkov M. V., Mulyak V. V., Konoplev Y. P. The Yarega heavy oil field — history, experience, and future. Journal of Petroleum Technology. 2012, vol. 64, no. 4, pp. 158—160. DOI: 10.2118/0412-0153-JPT.

3. Tyun'kin B. A., Konoplev Yu. P. Opyt podzemnoy razrabotki neftyanykh mestorozhdeniy i osnovnye napravleniya razvitiya termoshakhtnogo sposoba dobychi nefti [Experience of underground development of oil fields and the main directions of development of the thermal mining method of oil production], Ukhta, PechorNIPIneft', 1996, 160 p.

4. Fomin A. I., Grunskoy T. V. Improving the working conditions of oil miners during the transition from the thermal pit method of extracting high-viscosity oil to the modular pit method of developing the Yaregskoye field. Occupational Safety in Industry. 2020, no. 12, pp. 58—65. [In Russ]. DOI: 10.24000/0409-2961-2020-12-58-65.

5. Afanasjeva I. V., Fathutdinov R. I. Improving procedures of training employees by implementing guidance cards safe methods and techniques of work. Machines. Technologies. Materials. 2016, vol. 10, no. 10, pp. 10—12.

6. Klimova I. V. Instructional maps of safe methods and labor practices for certain types of work carried out in the oil mine. Journal of Mining Institute. 2017, vol. 225, pp. 354—359. [In Russ].

7. Boyko V. A., Boyko A. B. Method for accelerated formation of a heat-equalizing jacket in a mine working in a deep mine. MIAB. Mining Inf. Anal. Bull. 2004, no. 10, pp. 86—90. [In Russ].

8. Martynov A. A., Yakovenko A. K., Korol V. I. On the issue of reducing the risk of thermal injuries of miners in the workings of deep mines. MIAB. Mining Inf. Anal. Bull. 2004, no. 5, pp. 268—271. [In Russ].

9. Konoplev Yu. P., Gulyaev V. E. Implementation of new methods of thermal mining at the Yaregskoye high-viscosity oil field. Neftyanoe khozyaystvo. 2011, no. 2, pp. 89—91. [In Russ].

10. Kruglov Yu. V. Methods for combating elevated temperatures of the mine atmosphere in the working areas of oil mines of the Yaregskoye oil field. Proektirovanie, stroitel'stvo i ekspluatatsiya kompleksov podzemnykh sooruzheniy: trudy VI Mezhdunarodnoy konferentsii [Design, construction and operation of underground facilities complexes: Proceedings of the VI International Conference], Ekaterinburg, UGGU, 2019, pp. 284—293. [In Russ].

11. Tskhadaya N. D., Zhuykov A. E., Yagubov Z. Kh. Criteria for assessing optimal working conditions in the mine workings of oil mines. Neftegazovoe delo. 2012, no. 5, pp. 318—326. [In Russ].

12. Muminov R. O., Rayhanova G. E., Kuziev D. A. Experimental research and analysis of a quarry drilling rig. Ugol'. 2021, no. 5, pp. 32—36. [In Russ]. DOI: 10.18796/0041-5790-20215-32-36.

13. Gendler S. G., Fazylov I. R. Application efficiency of closed gathering system toward microclimate normalization in operating galleries in oil mines. MIAB. Mining Inf. Anal. Bull. 2021, no. 9, pp. 65—78. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_95.

14. Rudakov M. L., Korobitsyna M. A. On the possibility of normalizing the air temperature in the drilling galleries of oil mines. Occupational Safety in Industry. 2019, no. 8, pp. 66—71. [In Russ].

15. Kazakov B. P., Levin L. Yu., Shalimov A. V. Design of air conditioning systems for oil mines of the Yaregskoye field. Gornoe ekho. 2012, no. 1(47), pp. 22—23. [In Russ].

16. Nikolaev A. V. A method for ventilating sloping blocks of oil mines, which increases the energy efficiency of underground oil production. Neftyanoe khozyaystvo. 2016, no. 11, pp. 133—136. [In Russ].

17. Nikolaev A. V., Klishin V. I. Use of natural draught for improvement of airing efficiency in the oil mine production unit. IOP Conference Series: Earth and Environmental Science. 2021, vol. 823, no. 1, article 012047. DOI: 10.1088/1755-1315/823/1/012047.

18. Jianwei Cheng, Yan Wu, Haiming Xu, Jin Liu, Yekang Yang, Huangjun Deng, Yi Wang Comprehensive and integrated mine ventilation consultation model. Tunneling and Underground Space Technology. 2015, vol. 45, pp. 166—180. DOI: 10.1016/j.tust.2014.09.004.

19. Faynburg G. Z. Tsifrovizatsiya protsessov provetrivaniya kaliynykh rudnikov: Monografiya [Digitization of ventilation processes in potash mines], Perm-Ekaterinburg, 2020, 422 p.

20. Yu Xu, Zijun Li, Huasen Liu, Mintao Jia, Qiaoli Wang, Mengsheng Zhang, Yuanyuan Xu Modeling of the dynamic behaviors of heat transfer during the construction of roadway using moving mesh. Сase Studies in Thermal Engineering. 2021, vol. 26, article 100958. DOI: 10.1016/j.csite.2021.100958.

21. Ding C., He X., Nie B. Numerical simulation of airflow distribution in mine tunnels. International Journal of Mining Science and Technology. 2017, vol. 27, no. 4, pp. 663—667. DOI: 10.1016/j.ijmst.2017.05.017.

22. Wang Z., Ren T., Ma L., Zhang J. Investigations of ventilation airflow characteristics on a longwall face — a computational approach. Energies. 2018, vol. 11, no. 6, article 1564. DOI: 10.3390/en11061564.

23. Krawczyk J. A preliminary study on selected methods of modeling the effect of shearer operation on methane propagation and ventilation at longwalls. International Journal of Mining Science and Technology. 2020, vol. 30, no. 5, pp. 675—682. DOI: 10.1016/j.ijmst.2020.04.007.

24. Pavlenko M. V., Khaidina M. P., Kuziev D. A., Pihtorinskiy D., Muratov A. Z. Impacts of the combine harvester in the production of coal to increase methane recovery array in the workspace lava. Ugol'. 2019, no. 4, pp. 8—11. [In Russ]. DOI: 10.18796/0041-5790-2019-4-8-11.

25. Sasmito A. P., Birgersson E., Ly H. C., Mujumdar A. S. Some approaches to improve ventilation system in underground coal mines environment. A computational fluid dynamic study. Tunnelling and Underground Space Technology. 2013, vol. 34, pp. 82—95. DOI: 10.1016/j.tust.2012.09.006.

26. Jianwei Cheng, Siyuan Li, Fuxi Zhang, Changchun Zhao, Shengqiang Yang, Apurna Ghosh CFD modelling of ventilation optimization for improving mine safety in longwall working faces. Journal of Loss Prevention in the Process Industries. 2016, vol. 40, pp. 285—297. DOI: 10.1016/j.jlp.2016.01.004.

27. Kaledina N. O., Kobylkin S. S. System design of mine ventilation based on volumetric modeling of aerogasdynamic systems. MIAB. Mining Inf. Anal. Bull. 2012, no. S1, pp. 282—293. [In Russ].

28. Guang Xu, Kray D. Luxbacher, Saad Ragab, Jialin Xu, Xuhan Ding Computational fluid dynamics applied to mining engineering: a review. International Journal of Mining, Reclamation and Environment. 2017, vol. 31, no. 4, pp. 251—275.

29. Brodny J., Tutak M. Applying computational fluid dynamics in research on ventilation safety during underground hard coal mining. A systematic literature review. Process Safety and Environmental Protection. 2021, vol. 151, no. 1, pp. 373—400. DOI: 10.1016/j.psep.2021.05.029.

30. Mokhirev N. N., Rad'ko V. V. Inzhenernye raschety ventilyatsii shakht. Stroitel'stvo. Rekonstruktsiya. Ekspluatatsiya [Engineering calculations of mine ventilation. Building. Reconstruction. Exploitation], Moscow, Nedra-Biznestsentr, 2007, 324 p.

31. Aitao Z., Wang K. Role of gas ventilation pressure on the stability of airway airflow in underground ventilation. Journal of Mining Science. 2018, vol. 54, no. 12, pp. 111—119.

32. Krainov A. V., Pashkov E. N., Ponomaryov A. V. Conjugate heat transfer in the interaction of the viscous liquid with technological elements of energy systems in conditions of their internal contour moving. Advanced Materials Research. 2014, vol. 1040, pp. 876—880.

33. Nikolaev A. V., Alymenko N. I., Kamenskih A. A., Nikolaev V. A. The results of air treatment process modeling at the location of the air curtain in the air suppliers and ventilation shafts. E3S Web of Conferences. 2017, vol. 15, article 02004. DOI: 10.1051/e3sconf/20171502004.

34. Kychkin A., Nikolaev A. IoT-based mine ventilation control system architecture with digital twin. International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 2020, article 9111995. DOI: 10.1109/ICIEAM48468.2020.9111995.

35. Gendler S. G. The justification of new technique ventilation at contraction of working with two exits in soil surface. Eurasian Mining. 2016, no. 2, pp. 41—44.

36. Menter F. R. Review of the shear-stress transport turbulence model experience from an industrial perspective. International Journal of Computational Fluid Dynamics. 2009, vol. 23, no. 4, pp. 305—316.

37. Versteeg H., Malalasekra W. An introduction to computational fluid dynamics: The finite volume method, 2nd edition. Prentice Hall, 2007. 520 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.