Bibliography: 1. Zhukovskiy Yu. L., Suslikov P. K. Assessment of the potential effect of applying demand management technology at mining enterprises. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 3, pp. 895—908. [In Russ]. DOI: 10.21177/1998-4502-2024-16-3-895-908.
2. Petrov V. L., Kuznetsov N. M., Morozov I. N. Modeling power use at processing plant. Gornyi Zhurnal. 2022, no. 2, pp. 72—76. [In Russ]. DOI: 10.17580/gzh.2022.02.11.
3. Kapansky A. A. Methods for solving the problems of evaluation and forecasting energy efficiency. Kazan state power engineering university bulletin. 2019, vol. 11, no. 2(42), pp. 103—115. [In Russ].
4. Wang Y., Zhang N., Chen X. A short-term residential load forecasting model based on lstm recurrent neural network considering weather features. Energies. 2021, vol. 14, article 2737. DOI: 10.3390/en14102737.
5. Zhukovskiy Y., Batueva D., Buldysko A., Shabalov M. Motivation towards energy saving by means of IoT personal energy manager platform. Journal of Physics: Conference Series. 2019, vol. 1333, no. 6, article 062033. DOI: 10.1088/1742-6596/1333/6/062033.
6. Sokolov A. A., Fomenko O. A., Ignatev I. V. Development of algorithms for control and control of electric power parameters based on information-measuring system data. Journal of Physics: Conference Series. 2022, vol. 217, no. 1, article 012076. DOI: 10.1088/1742-6596/2176/1/012076.
7. Sokolov A. A., Orlova L. G., Bashmur K. A., Kuzmich R. I., Kukartsev V. V. Ensuring uninterrupted power supply to mining enterprises by developing virtual models of different operation modes of transformer substations. MIAB. Mining Inf. Anal. Bull. 2023, no. 11-1, pp. 278—291. [In Russ]. DOI: 10.25018/0236_1493_2023_111_0_278.
8. Klyuev R. V. System analysis of calculation methods for power supply systems in quarry points. Sustainable Development of Mountain Territories. 2024, vol. 16, no. 1, pp. 302—310. [In Russ]. DOI: 10.21177/1998-4502-2024-16-1-302-310.
9. Shishkin P. V., Malozyomov B. V., Martyushev N. V., Sorokova S. N., Efremenkov E. A., Valuev D. V., Qi M. Mathematical logic model for analysing the controllability of mining equipment. Mathematics. 2024, vol. 12, no. 11, article 1660. DOI: 10.3390/math12111660.
10. Malozyomov B. V., Martyushev N. V., Sorokova S. N., Efremenkov E. A., Valuev D. V., Qi M. Analysis of a predictive mathematical model of weather changes based on neural networks. Mathematics. 2024, vol. 12, no. 3, article 480. DOI: 10.3390/math12030480.
11. Klyuev R. V. Analysis of technological and energy parameters of ball mills. Russian Mining Industry Journal. 2024, no. 6, pp. 107—110. [In Russ]. DOI: 10.30686/1609-9192-2024-6-107-110.
12. Klyuev R. V. Reliability analysis of open-pit power supply system components. Mining Science and Technology (Russia). 2024, no. 9(2), pp. 183—194. [In Russ]. DOI: 10.17073/2500-0632-202403-254.
13. Oprea S. V., Bara A., Ifrim G. Flattening the electricity consumption peak and reducing the electricity payment for residential consumers in the context of smart grid by means of shifting optimization algorithm. Computers & Industrial Engineering. 2018, vol. 122, pp. 125— 139. DOI: 10.1016/j.cie.2018.05.053.
14. Patil P. D., Patil R., Ahire P., Bharati R., Dongre Y. An adaptive methodology based on predictive deep learning and context aware clustering for electricity power usage mining and optimization at different granularity levels. e-Prime — Advances in Electrical Engineering, Electronics and Energy. 2024, vol. 8, article 100628. DOI: 10.1016/j.prime.2024.100628.
15. Abramovich B., Sychev Y., Prokhorova V. The application of modern information technologies for power monitoring and control in conditions of distributed generation. Conference of Open Innovation Association, FRUCT 2014. 2014, pp. 3—8, article 7000938. DOI: 10.1109/FRUCT.2014.7000938.
16. Vyalkova S. A., Morgoeva A. D., Gavrina O. A. Development of a hybrid model for predicting the consumption of electrical energy for a mining and metallurgical enterprise. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 3, pp. 486—493. [In Russ]. DOI: 10.21177/19984502-2022-14-3-486-493.
17. Albuquerque P. C., Cajueiro D. O., Rossi M. D. C. Machine learning models for forecasting power electricity consumption using a high dimensional dataset. Expert Systems with Applications. 2022, vol. 187, article 115917. DOI: 10.1016/J.ESWA.2021.115917.
18. Nazarychev A. N., Dyachenok G. V., Sychev YU. A. A reliability study of the traction drive system in haul trucks based on failure analysis of their functional parts. Journal of Mining Institute. 2023, vol. 261, pp. 363—373. [In Russ].
19. Balovtsev S. V., Merkulova A. M. Comprehensive assessment of buildings, structures and technical devices reliability of mining enterprises. MIAB. Mining Inf. Anal. Bull. 2024, no. 3, pp. 170—181. [In Russ]. DOI: 10.25018/0236_1493_2024_3_0_170.
20. Buryanina N. S., Korolyuk Yu. F., Maleeva E. I., Lesnykh E. V. Power transmission lines with a reduced number of wires in mountain territories. Sustainable Development of Mountain Territories. 2018, no. 3, pp. 404—410. [In Russ]. DOI: 10.21177/1998-4502-2018-10-3-404-410.
21. Abramovich B. N., Kuznetsov P. A., Sychev Yu. A. Protective controller against cascade outages with selective harmonic compensation function. Journal of Physics: Conference Series. 2018, vol. 1015, no. 2, article 022001. DOI: 10.1088/1742-6596/1015/2/022001
22. Ji Q., Zhang S., Duan Q., Gong Y., Li Y., Xie X., Bai J., Huang C., Zhao X. Shortand medium-term power demand forecasting with multiple factors based on multi-model fusion. Mathematics. 2022, vol. 10, article 2148. DOI: 10.3390/math10122148.