Back to search

Conductivity of geological environment with plane-parallel system of joints

Authors: Sizin P. E.

The article discusses conductivity of two-dimensional and three-dimensional medium containing a plane-parallel system of conductive or insulating thin fractures. Using the known formulas for small increments of conductivity in a medium with a single crack, the differential equations are derived for the conductivity in a medium with cracks of a considerable concentration. The equations are exponential and contain no percolation thresholds. In the two-dimensional case, the cracks represented short segments, and in the three-dimensional case, the cracks were thin circular disks, which allowed modeling jointed rocks. Then, in COMSOL Multiphysics, agreement was checked between the numerical results and theoretical relationships of two-component medium conductivity and crack concentrations, and also with the EMA predictions in 2D case. In two dimensions, at random arrangement of centers of conductive cracks, the increment in conductivity with the increasing concentration of cracks is linear. The change in conductivity of a medium with insulating cracks is dual relative to the change in conductivity of a medium with insulating cracks. At a regular arrangement of cracks, conductivity is described well using the EMA and the method of addition of singular defects. In three dimensions, conductivity of a medium both with conductive and insulating cracks is described well using the method of adding singular defects. Advantages of the proposed technique over the EMA are the mathematical simplicity and applicability to a wider class of defects and cracks.

Keywords: conductivity, two-component medium, thin cracks, effective medium approximation, regular arrangement of joints, two-dimensional and three-dimensional models, numerical modeling, COMSOL Multiphysics.
For citation:

Sizin P. E. Conductivity of geological environment with plane-parallel system of joints. MIAB. Mining Inf. Anal. Bull. 2024;(8):79-91. [In Russ]. DOI: 10.25018/0236_1493_ 2024_8_0_79.

Acknowledgements:
Issue number: 8
Year: 2024
Page number: 79-91
ISBN: 0236-1493
UDK: 622.83: 550.83
DOI: 10.25018/0236_1493_2024_8_0_79
Article receipt date: 30.10.2023
Date of review receipt: 20.02.2024
Date of the editorial board′s decision on the article′s publishing: 10.07.2024
About authors:

P.E. Sizin, Cand. Sci. (Phys. Mathem.), Assistant Professor, NUST MISIS, 119049, Moscow, Russia, e-mail: mstranger@list.ru, ORCID ID: 0000-0001-8156-4972.

 

For contacts:
Bibliography:

1. Feng P., Zhao J., Dai F., Wei M., Liu B. Mechanical behaviors of conjugate-flawed rocks subjected to coupled static—dynamic compression. Acta Geotechnica. 2022, vol. 17, no. 5, pp. 1767—1784. DOI: 10.1007/s11440-021-01322-6.

2. Kornev V. M., Zinovyev A. A. Model of quasi-brittle rocks fracture. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2013, no. 4, pp. 74—82. [In Russ].

3. Lu J., Jiang C., Jin Z., Wang W., Zhuang W., Yu H. Three-dimensional physical model experiment of mining-induced deformation and failure characteristics of roof and floor in deep underground coal seams. Process Safety and Environmental Protection. 2021, vol. 150, no. 6, pp. 400—415. DOI: 10.1016/j.psep.2021.04.029.

4. Andrievskij A. P. Design procedure of optimal parameters of drilling and blasting operations certificate under drilling with straight slot tier cut. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 1992, no. 5, pp. 71—77. [In Russ].

5. Sobolev G. A. Osnovy prognoza zemletryaseniy [Earthquakes prediction basics], Moscow, Nauka, 1993, 313 p.

6. Feng P., Dai F., Shuai K., Wei M. Dynamic mechanical behaviors of pre-fractured sandstone with noncoplanar and unparallel flaws. Mechanics of Materials. 2022, vol. 166, no. 6, article 104219. DOI: 10.1016/j.mechmat.2022.104219.

7. Chengzhi Qi, Fa Zhao, Dyskin A. V., Chen Xia, Pasternak E. Crack interaction and fracturing of geomaterials with multiscale cracks. International Journal of Rock Mechanics and Mining Sciences. 2022, vol. 153, no. 5, article 105084. DOI: 10.1016/j.ijrmms.2022.105084.

8. Ren S., Han T., Fu L., Yan H. Pressure effects on the anisotropic velocities of rocks with aligned fractures. Acta Geophysica Sinica. 2021, vol. 64, no. 7, pp. 2504—2514. DOI: 10.6038/cjg2021O0318DOI: 10.6038/cjg2021O0318.

9. Anderson I., Ma J., Wu X., Stow D. Determining reservoir intervals in the Bowland Shale using petrophysics and rock physics models. Geophysical Journal International. 2022, vol. 228, pp. 39—65. DOI: 10.1093/gji/ggab334.

10. Grib N. N., Uzbekov A. N., Imaev V. S., Grib G. V., Abetov A. E. Variations in the geoelectric properties of the rock masses as a result of the seismic effects of industrial explosions. IOP Conference Series: Earth and Environmental Science. 2019, vol. 362, no. 1, article 012120. DOI: 10.1088/17551315/362/1/012120.

11. Kasakhara K. Mekhanika zemletryaseniy [Earthquake mechanics], Moscow, Mir, 1985, 264 p.

12. Sizin P. E, Shkuratnik V. L. Theoretical estimation of microcracks influence on rocks conductivity with Maxwell approximation. MIAB. Mining Inf. Anal. Bull. 2015, no. 3, pp. 212—218. [In Russ].

13. Balagurov B. Ya. On the influence of the shape of inclusions on the conductivity of two-dimensional models of composites. Zhurnal tekhnicheskoy fiziki. 2011, vol. 81, no. 5, pp. 11—17. [In Russ].

14. Bruggeman D. A. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annals of Physics. 1935, vol. 416, pp. 665—679. DOI: 10.1002/andp.19354160802.

15. Landauer R. Conductivity of cold-worked metals. Physical Review. 1951, vol. 82, pp. 520—521. DOI: 10.1103/PhysRev.82.520.

16. Saevik P. N., Jakobsen M., Lien M., Berre I. Anisotropic effective conductivity in fractured rocks by explicit effective medium methods. Geophysical Prospecting. 2014, vol. 62, no. 6, pp. 1297— 1314. DOI: 10.1111/1365-2478.12173.

17. Zhukov V. S. Influence of intergranular and fractured porosity on the electrical resistivity of the reservoirs of the Chayandinskoye field (Eastern Siberia). Geofizicheskie Issledovaniya. 2022, vol. 23, no. 2, pp. 5—17. [In Russ]. DOI: 10.21455/gr2022.2-1.

18. Parkhomenko E. I. Elektricheskie svoystva gornykh porod [Electrical properties of rocks], Moscow, Nauka, 1965, 164 p.

19. Aguilera R. Analysis of naturally fractured reservoirs from conventional well log. Journal of Petroleum Technology. 1976, vol. 28, no. 7, pp. 764—772.

20. Voznesensky A. S., Kidima-Mbombi L. K. Formation of synthetic structures and textures of rocks when simulating in COMSOL Multiphysics. Mining Science and Technology (Russia). 2021, vol. 6, no. 2, pp. 67— 72. [In Russ]. DOI: 10.17073/2500-0632-2021-2-65-72.

21. Sizin P. E., Voznesenskii A. S., Kidima-Mbombi L. K. Influence of random parameter joint length on rock electrical conductivity. Mining Science and Technology (Russia). 2023, vol. 8, no. 1, pp. 30—38. [In Russ]. DOI: 10.17073/2500-0632-2022-07-11.

22. Balagurov B. Ya. Elektrofizicheskie svoystva kompozitov: Makroskopicheskaya teoriya [Electrophysical properties of composites: Macroscopic theory], Moscow, URSS, 2018, 752 p.

23. Sizin P. E. Theoretical and numerical modeling of electric conductance in porous media. MIAB. Mining Inf. Anal. Bull. 2023, no. 5, pp. 43—56. [In Russ]. DOI: 10.25018/0236_1493_2023_5_0_43.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.