Back to search

Simulation modeling of hybrid regenerative braking method for variable frequency asynchronous motors in underground electrical networks

In event of a fault, mining equipment fitted with DC drives cuts off for a short or long time but rotors continue rotating for a certain period. The rotation speed is governed by the damping ratio of counter EMF generated by the dead motor. Inertia braking is characterized as the «free path» mode. This study aims at development and simulation testing of hybrid braking of asynchronous motors in underground hybrid electrical networks by means of braking using special brake resistor and by means of DC supply to the motor stator circuit from the DC circuit of the frequency converter. The accomplished research made it possible to propose engineering solutions on the structure and functions of a special device for the dynamic braking of a motor supplied by the frequency converter. The device ensures shutdown or deceleration via resistive braking and DC supply directly in stator circuit of asynchronous motor. As a result, it becomes possible to implement effective braking and damping of counter EMF of the motor, as well as to decrease the current amplitude in the circuits of the connection and metering filter of the shutoff protection device (SPD).

Keywords: hybrid underground electric network, dynamic braking, variable frequency motor, leakage current, counter EMF of motor, braking resistor control, protection cutoff.
For citation:

Petrov V. L., Pichuev A. V. Simulation modeling of hybrid regenerative braking method for variable frequency asynchronous motors in underground electrical networks. MIAB. Mining Inf. Anal. Bull. 2024;(8):153-162. [In Russ]. DOI: 10.25018/0236_1493_2024_ 8_0_153.

Acknowledgements:
Issue number: 8
Year: 2024
Page number: 153-162
ISBN: 0236-1493
UDK: 62.83
DOI: 10.25018/0236_1493_2024_8_0_153
Article receipt date: 22.04.2024
Date of review receipt: 21.05.2024
Date of the editorial board′s decision on the article′s publishing: 10.07.2024
About authors:

V.L. Petrov1, Dr. Sci. (Eng.), Professor, Vice-Rector, e-mail petrovv@misis.ru, Scopus ID 8919065900, ORCID ID: 0000-0002-6474-5349,
A.V. Pichuev1, Dr. Sci. (Eng.), Assistant Professor, e-mail allexstone@mail.ru, Scopus ID 57209798580, ORCID ID: 0000-0001-7457-5702,
1 NUST MISIS, 119049, Moscow, Russia.

 

For contacts:

V.L. Petrov, e-mail: e-mail petrovv@misis.ru.

Bibliography:

1. Bahov P., Alexandrova M. Comparative analysis of conventional methods for braking a threephase induction motor and research on efficient combinations of methods for efficient braking process. International Conference Automatics and Informatics (ICAI), Varna, Bulgaria. 2022, pp. 129—134. DOI: 10.1109/ICAI55857.2022.9960007.

2. Wati T., Masfufiah I., Suheta T., Patria N., Putra U., Munir M. Dynamic braking of three phase induction motor using inject dc voltage and capacitor load. Fourth International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia. 2021, pp. 1—4. DOI: 10.1109/ICVEE54186.2021.9649673.

3. Russiyan S. A. Study of the state of the current leakage circuit to the ground in the electrical network of a mine section with a voltage of 3 (3.3) kV. Scientific Bulletin of the National Technical University. Series Mining Electromechanics. 2013, no. 2, pp. 213—222. [In Russ].

4. Yeh C.-C., Demerdash N. A. O. Fault tolerant operations in adjustable-speed drives and soft starters for induction motors. IEEE Power Electronics Specialists Conference, Orlando, FL, USA. 2007, pp. 1942—1949. DOI: 10.1109/PESC.2007.4342301.

5. Denisova E. V., Marenich K. N., Dubinka E. S. A dual-speed induction motor as a source of electrical hazard in operating conditions of coal mine process support areas. Russian Mining Industry Journal. 2021, no. 4, pp. 145—152. [In Russ]. DOI: 10.30686/1609-9192-2021-4-145-152.

6. Aree P., Prempri N. Steady-state torque characteristics of squirrel-cage induction motors under DC injection braking. International Conference on Power, Energy and Innovations (ICPEI), Nakhon Ratchasima, Thailand. 2021, pp. 1—4. DOI: 10.1109/ICPEI52436.2021.9690676.

7. Muhaimin M. I. Dynamic braking application on three phase induction motor using PLC. IOP Conference Series: Materials Science and Engineering. 2019, vol. 536, no. 1, pp. 1—9. DOI: 10.1088/ 1757-899X/536/1/012097.

8. Giri Fouad AC electric motors control: Advanced design techniques and applications. 2013, 592 p. DOI: 10.1002/9781118574263.

9. Toirov O. Improve operational efficiency of regulated conveyor installation of the mining industry. International Journal of Advanced Research in Science, Engineering and Technology. 2018, vol. 5, no. 3, pp. 5464—5471.

10. Mirzaeva G., Carter D., Uddin M., Stepien P. Electrically safe variable speed drive for underground mining applications. IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA. 2019, pp. 1—8. DOI: 10.1109/IAS.2019.8912334.

11. Babokin G. I., Shprekher D. M., Kolesnikov E. B. Method of improving safe operation of mining machinery electrics by forecasting insulation resistance. MIAB. Mining Inf. Anal. Bull. 2020, no. 2, pp. 34—45. [In Russ]. DOI: 10.25018/0236-1493-2020-2-0-34-45.

12. Pichuev A. V., Petrov V. L. Equivalent circuit for mine power distribution systems for the analysis of insulation leakage current. Mining Science and Technology (Russia). 2023, vol. 8, no. 1, pp. 78—86. [In Russ]. DOI: 10.17073/2500-0632-2023-01-72.

13. Petrov V. L., Pichuev A. V. Assessing the efficiency of measures to enhance electric power quality in variable-frequency drive for scraper conveyors. Mining Science and Technology (Russia). 2024, vol. 9, no. 1, pp. 60—69. [In Russ]. DOI: 10.17073/2500-0632-2024-01-198.

14. Petrov V. L., Pichuev A. V. Hazard assessment of asymmetric modes for leakage current flowing through insulation in underground mine electrical grids. Energy Safety and Energy Economy. 2022, no. 5, pp. 15—22. [In Russ].

15. Babokin G. I., Shprecher D. M., Kolesnikov E. B, Ovsyannikov D. S. Investigation of the frequency start of a double-motor electric drive of a scraper conveyor by the method of mathematical modeling. Electromechanics. 2022, no. 1, pp. 49—55. [In Russ]. DOI: 10.17213/0136-3360-2022-1-49-55.

16. Shprekher D. M., Babokin G. I., Kolesnikov E. B., Zelenkov A. V. Application of the adaptive PI-Controller in the system of the load regulation of the shearer. Russian Electromechanics. 2020, vol. 63, no. 5, pp. 46—54. [In Russ]. DOI: 10.17213/0136-3360-2020-5-46-54.

17. Ivanov G. M. Avtomatizirovannyy elektroprivod v promyshlennosti [Automated electric drive in industry], Ulyanovsk, UlGTU, 2013, 442 p.

18. Ilyinsky N. F. N. F., Moskalenko V. V. Elektroprivod: energoi resursosberezhenie [Electric drive: energy and resource saving], Moscow, Izdatel'skiy tsentr «Akademiya», 2008, 208 p.

19. Katsman M. M. Elektricheskiy privod [Electric drive], Moscow, Izdatel'skiy tsentr «Akademiya», 2011, 243 p.

20. Kisarimov R. A. Elektroprivod: Spravochnik [Electric drive: Directory], Moscow, RadioSoft, 2008, 352 p.

21. Aree P. Modelling and simulation of induction machine under DC current injection braking. 5th International Conference on Control and Robotics Engineering (ICCRE), Osaka, Japan. 2020, pp. 124—129. DOI: 10.1109/ICCRE49379.2020.9096474.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.