Back to search

Intensification of airing of deep open-pit diamond mine by tornado-like vortices

The conditions for airing the open pit mine become more deteriorate by an increase of the final depth of open-pit mining. A seasonal winter drop of atmospheric air temperature at the Far North is steadily accompanied by an increase of the gas contamination of the working locations and progressively leads to unwanted downtime of mining. One of the alternative and promising brainchild for solving the problem of ventilation of deep open pits can be the use of natural meteorological factors in combination with the potential ability of artificially created tornado-like vortex currents. The issues of creating conditions for a controlled local tornado in the space of a funnel-shaped open pit, typical for the diamond mining, are important for scientific and practical reasons for solving the problems of reducing gas and dust pollution in stagnant zones of the deep open pit mine. The set task of improving the ventilation efficiency in the volume of space of the deep open pit is considered from the standpoint of two sides of opposite positions: from the side of the surface — the most efficient guide and use of natural wind flows to lower the natural air ventilation boundary, and from the side of the pit bottom — to provide a controlled upward vortex ventilation flow for the release of polluted air into zone of reach of natural wind ventilation streams. Technical solutions are proposed, the joint work of which together provides an increase in the efficiency of ventilation of the most polluted horizons in the lower part of the open pit by creating and ensuring the stability of a vertical vortex ventilation column, the geometric and dynamic parameters of which can be monitored and controlled

Keywords: open pit mine, diamond deposit, gaseous contaminants, open pit ventilation, vortex flows, whirlwind, tornado.
For citation:

Kovlekov I. I. Intensification of airing of deep open-pit diamond mine by tornado-like vortices. MIAB. Mining Inf. Anal. Bull. 2022;(5—2):124—135. [In Russ]. DOI: 10.25018/0236_1493_2022_52_0_124.

Acknowledgements:
Issue number: 5
Year: 2022
Page number: 124-135
ISBN: 0236-1493
UDK: 622.4
DOI: 10.25018/0236_1493_2022_52_0_124
Article receipt date: 29.09.2021
Date of review receipt: 01.03.2022
Date of the editorial board′s decision on the article′s publishing: 10.04.2022
About authors:

Kovlekov I. I., Dr. Sci. (Eng.), professor, http://orcid.org/0000-0002-5121-8240, Mining Institute, M. K. Ammosov North-Eastern Federal University, Yakutsk, 677000, 58 Belinsky str., Russia, e-mail: kovlekov@mail.ru.

For contacts:

Kovlekov I. I., e-mail: kovlekov@mail.ru.

Bibliography:

1. Luo H., Zhou W., Jiskani I. M., Wang Z. Analyzing Characteristics of Particulate Matter Pollution in Open-Pit Coal Mines: Implications for Green Mining. MDPI, Energies. 2021, vol. 14, no. 9, 19 p. DOI: 10.3390/en14092680.

2. Evaluating the Air Flow and Gas Dispersion Behavior in a Deep Open-Pit Mine Based on Monitoring and CFD Analysis: A Case Study at the Coc Sau Open-Pit Coal Mine (Vietnam). Nguyen Van Duc, Changwoo Lee, Xuan-Nam Bui and other. Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining. 2020, pp. 224—244. DOI:10.1007/978—3—030—60839—2_12.

3. Choudhury A., Bandopadhyay S. The Effect Of Velocity On The Dispersion Of Pollutants In A Hypothetical Arctic Open-pit Mine. Proceedings of the 24th International Conference on Modelling, Monitoring and Management of Air Pollution (AIR 2016), 20—22 June 2016, Crete, Greece. WIT Transactions on Ecology and the Environment. WIT Press, 2016, vol. 207, pp. 35—45.

4. Tukkaraja P., Keerthipati M., French A. Simulating temperature inversions in surface mines using computational fluid dynamics. Proceedings of the South Dakota Academy of Science . 2016, vol. 95, pp 119—124.

5. Timofeeva Yu.V., Suksova S. A., Dolkan A. A. and Popov E. V. Methods of airing quarries. The Eurasian Scientific Journal, 2020, vol.12, no. 6, pp. 1—7, available at: https:// esj.today/PDF/79NZVN620.pdf (accessed 14.09.2021). [In Russ].

6. Klubnichkin E. K., Rogach M. S., Pavlov A. Ju., Propletin A. M., Demidov Ju. V. Patent SU 819357 A1. Arrangement for airing deep quarries. 08.05.79. [In Russ].

7. Kaljuzhnyj V. V., Gudim S. F. Patent SU 1767193 A1. Equipment for ventilation of deep quarries. 13.08.90. [In Russ].

8. Plugin A. I., Opara Ju.S., Burangulov N. I., Jan’shin D. V. Patent RU 120108 U1. Technical complex for creating rising atmospheric streams. 07.06.2012. [In Russ].

9. Morin A. S., Butkin V. D., Nehorosheva L. V., Novosjolov R. G., Bartel’ A.Ja. Patent RU 2215157 C1. Method of artificial ventilation of opencasts. 31.05.2002. [In Russ].

10. Ushakov K. Z., Mikhailov V. A. Aerology of Open Pit Mines: University Textbook. Moscow: Nedra, 1985. 272 p. [In Russ].

11. Konorev M. M., Nesterenko G. F. Present-day and promising ventilation and dustand-gas suppression systems at open pit mines. Journal of Mining Science, 2012, vol. 48, no. 2, pp. 322—328. [In Russ].

12. Sytenkov V. S. Ensuring the safe operation of the staff in the polluted atmosphere of deep pits. Ratsionalnoe osvoenie nedr. 2013, no. 2, pp. 50—55. [In Russ].

13. Raj V., Bandopadhyay S. Mitigation of Pollutants in Deep Open-Pit Mines under Arctic Air Inversion. 16th North American Mine Ventilation Symposium, Golden, CO. June 2017, available at: https://www.researchgate.net/publication/349443750 (accessed 14.09.2021).

14. Dragunskiy O. N. Breaking inversions in open pit mines using induced ventilation facilities. Mining informational and analytical bulletin. 2019, no. 5, pp. 13—21. [In Russ].

15. Morin A. S., Borisov F. I., Kosolapov A. I. Justification of dynamic schemes of the pipeline-airing of deep open pits. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2011, no. 8, pp. 10—18. [In Russ].

16. Tsvigun V. N., Koinov R. S. Tornado giant heat engine, destroying infrastructure pulsating irregular pressure of the wind on mechanisms for low cycle fatigue. Journal of advanced research in natural science. 2018, no. 5, pp. 24—29. [In Russ].

17. Intense   atmospheric   vortices   and   their   dynamics.   Ed.   by:   I. I.   Mokhov, M. V. Kurgansky, O. G. Chkhetiani. Moscow: GEOS, 2018, 482 p. [In Russ].

18. Mazurov M. E. Physical mechanisms and properties of tornadoes. Bulletin of the Russian Academy of Sciences: Physics, 2019, vol. 83, no. 1, pp. 97—103. DOI 10.1134/ S0367676519010150. [In Russ].

19. Bautin S. P., Krutova I. Yu., Obukhov A. G. Gas-dynamic theory of upward swirled flows. Yekaterinburg: Ur GUPS, 2020, 399 p. [In Russ].

20. Varaksin A. Y. Concentrated air and fire vortices: physical modeling (a review). High Temperature. 2016, vol. 54, no. 3, pp. 409—427. DOI: 10.7868/S0040364416030224. [In Russ].

21. Tohidi A., Gollner M. J., Xiao H. Fire Whirls. Annual Review of Fluid Mechanics. 2018, no. 50, pp. 187—213. DOI: 10.1146/annurev-fluid-122316—045209.

22. Mcnulty J. UK Patent Application GB2461250A, 05.06.2008. Method for Creating Extremely Tall, Fluid Dynamic ‘Cloud Fountains’. available at: https://patents.google.com/ patent/GB2461250A/en?oq=GB+2461250 (accessed 14.09.2021).

23. Harman J., Rafael S. US Patent Application US20140345696A1, 06.11.2012. Atmospheric circulation system and method. available at: https://patents.google.com/patent/ US20140345696A1/en?oq=us20140345696 (accessed 14.09.2021).

24. Kovlekov I. I. Patent RU 2734532 C1. Pit ventilation method. 10.07.2020. [In Russ].

25. Kovlekov I. I. Patent RU 2741294 C1. Method for funnel-shaped pit ventilation. 31.07.2020. [In Russ].

26. Shakhraj S. G., Sharova N. A. Patent RU 2651666 C1. Method of intensification of natural air exchange in deep pits. 21.06.2017. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.