Impact of blasthole blasting on pillars and enclosing rock mass during hybrid opencast/underground mining at the Jerui deposit

For the conditions of blasthole blasting during hybrid opencast/underground mining at a stockwork gold ore deposit, it is found how explosions influence propagation of induced damage zones in rock mass. During blasting, three zones are formed: I–disintegration (failure); II–induced fracturing; III–induced micro-fracturing. Propagation of disintegration zone I during blasting in underground mining is to be known to adjust drilling and blasting patterns and design—distances from perimeter blasthole to a project perimeter of a mine opening or distances between the main and slotting blasthole charges. Propagation of induced fracturing zone II is important for the assessment of impact exerted by an explosion on the stability of rock mass with induced fractures in opencast mining, particularly, at the ends of vertical and inclined blastholes from the viewpoint of the zone extent in the crown pillar, from the boundary of the maximal depth of an open cast. In underground mining, the propagation of zone II depthwise enclosing rock mass is also critical (integrity of rib pillars to be cut later is damaged). In zone III, induced micro-fractures improve poroperm properties of rock mass, permeability, flow of fluids, for instance, water, etc.

Keywords: opencast and underground mining, blasthole charges, enclosing rock mass, pillar, mine opening, crown pillar, induced fracturing, micro-fractures, P-wave velocity.
For citation:

Chuprin K. E., Mansurov V. A., Babkin E. A., Eremenko V. A., Kosyreva M. A. Impact of blasthole blasting on pillars and enclosing rock mass during hybrid opencast/underground mining at the Jerui deposit. MIAB. Mining Inf. Anal. Bull. 2025;(7):5-23. [In Russ]. DOI: 10.25018/0236_1493_2025_7_0_5.

Acknowledgements:
Issue number: 7
Year: 2025
Page number: 5-23
ISBN: 0236-1493
UDK: 622.831; 622,2; 622.235
DOI: 10.25018/0236_1493_2025_7_0_5
Article receipt date: 01.03.2025
Date of review receipt: 18.04.2025
Date of the editorial board′s decision on the article′s publishing: 10.06.2025
About authors:

K.E. Chuprin1, Deputy CEO on Production, e-mail: chuprin.ke@alliance-altyn.kg,
V.A. Mansurov1, Dr. Sci. (Phys. Mathem.), Professor, Counsellor to CEO, e-mail: geomans43@gmail.com,
E.A. Babkin1, Head of Geotechnical Engineering Service, e-mail: babkin.ea@alliance-altyn.kg,
V.A. Eremenko2, Dr. Sci. (Eng.), Professor of the Russian Academy of Sciences, Director, Professor,
M.A. Kosyreva2, Cand. Sci. (Eng.), Engineer, e-mail: marinkosyreva@gmail.com,
1 Alliance Altyn LLC, Bishkek, Kirgizia,
2 NUST MISIS, Research Center for Applied Geomechanics and Convergent Technologies in Mining, 119049, Moscow, Russia.

 

For contacts:

V.A. Eremenko, e-mail: prof.eremenko@gmail.com.

Bibliography:

1. Zlobina T. M., Petrov V. A., Prokof'ev V. Yu., Abramov S. S., Kotov A. A., Volfson A. A., Leksin A. B. Seismogenic nature of fluid-dynamic structural parageneses of the Uryakh gold ore field (Northeastern Transbaikalia). Geology of Ore Deposits. 2020, vol. 62, no. 4, pp. 291—320. [In Russ].

2. Sivkov D. V., Chitalin A. F., Sivkov D. V., Grishin E. M. Geological structure analysis and copper gold ore mineralization prediction at the Sakdrisi and Madneuli deposits in Georgia. Issledovanie Zemli iz Kosmosa. 2020, no. 1, pp. 3—19. [In Russ].

3. Popov S. S., Chitalin A. F., Sivkov D. V., Grishin E. M. Geological structure analysis and copper gold ore mineralization prediction at the Sakdrisi and Madneuli deposits in Georgia. Trudy VI Mezhdunarodnoy geologo-geofizicheskoy konferentsii «GeoEvraziya–2023. Geologorazvedochnye tekhnologii: nauka i biznes» [GeoEurasia-2023. Exploration technologies: science and business. VI International Conference Proceedings], Tver, 2023, pp. 69—73. [In Russ].

4. Chikatueva V. Yu., Stepanov N. V., Chitalin A. F., Korost D. V. X-ray computed tomography study for drill core of the Drazhnoe orogenic-type gold deposit (Sakha (Yakutia), Russian Federation). Ores and Metals. 2021, no. 4, pp. 43—59. [In Russ]. DOI: 10.47765/0869-5997-2021-10027.

5. Ermoshkin D. N., Kurmanaliev K. Z., Mansurov V. A., Mezhelovsky V. I., Babkin E. A. Justification of applicability of the mosaic pillar system in the ore-free blocks in mining of lode gold deposits. Russian Mining Industry Journal. 2023, no. 3, pp. 108—114. [In Russ].

6. Bronnikov D. M., Zamesov N. F., Bogdanov G. I. Razrabotka rud na bol'shikh glubinakh [Deeplevel ore mining], Moscow, Nedra, 1982, 292 p.

7. Imenitov V. R. Sistemy podzemnoy razrabotki rudnykh mestorozhdeniy [Underground ore mining system], Moscow, MGGU, 2000, 297 p.

8. Rasskazov I. Yu., Sekisov A. G., Cheban A. Yu. Enhancement of mining efficiency at structurally complex deposits with advanced extraction of very high-grade ore. MIAB. Mining Inf. Anal. Bull. 2023, no. 4, pp. 6—19. [In Russ]. DOI: 10.25018/0236_1493_2023_4_0_5.

9. Akbarov T. G., Urazov J. D., Nishanov A. Sh., Nishanov D. K. Mining of structurally complex lodes at Kochbulak fold deposit: Experience and prospects. MIAB. Mining Inf. Anal. Bull. 2023, no. 2, pp. 97—110. [In Russ]. DOI: 10.25018/0236_1493_2023_2_0_97.

10. Eremenko V. A., Kosyreva M. A., Vysotin N. G., Khazhyylai Ch. V. Geomechanical justification of room-and-pillar dimensions for rock salt and polymineral salt mining. Gornyi Zhurnal. 2021, no. 1, pp. 37—43. [In Russ].

11. Wang Kaixing, Wu Bin, Pan Yishan, Khmelinin A. P., Chanyshev A. I. Experimental investigation of block fracture influence on p-wave propagation in block rock mass. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2024, no. 2S, pp. 40—49.

12. Viktorov S. D., Zakalinskii V. M., Shipovskii I. E., Mingazov R. Ya. Effect of directed blasting on geotechnology and geomechanical behavior of rock mass in deep-level mining experimental investigation of block fracture influence on p-wave propagation in block rock mass. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2024, no. 2S, pp. 147—153. [In Russ].

13. Urbaev D. A., Akhpashev B. A., Galaiko A. V., Novikov А. А. Recommendations on selecting optimized blasting supply scenarios in lode gold ore mining. MIAB. Mining Inf. Anal. Bull. 2023, no. 1, pp. 59—69. [In Russ]. DOI: 10.25018/0236_1493_2023_1_0_59.

14. Rzhevskiy V. V. Fiziko-tekhnicheskie parametry gornykh porod [Physicotechnical parameters of rocks], Moscow, Nedra, 1975, 212 p.

15. Kutuzov B. N., Mar'yasov A. L., Sovmen V. K., Tokarenko A. V., Ekvist B. V. Seysmicheskaya bezopasnost' pri vzryvnykh rabotakh [Seismic safety in mining], Moscow, Izd-vo «Gornaya kniga», 2012, 228 p.

16. Grib G. V., Pozynich A. Yu., Grib N. N., Petrov E. E. Dependence of blasting-induced seismic effect on geotechnical conditions of blasting. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2012, no. 14(1-8), pp. 2112—2117. [In Russ].

17. Holmberg R., Persson P. A. The Swedish approach to contour blasting. Proceedings of the 4th Conference on Explosives and Blasting Technique, SEE, 1978, pp. 113—127.

18. Holmberg R. Drilling and blasting of rock masses. Engineering in Rock Masses, Chapter 20. 1992, pp. 385—399.

19. Holmberg R. Explosives and blasting technique. 1st edition. CRC Press, 2000, 468 p.

20. Shaposhnik S. N., Shaposhnik Yu. N., Tsoi P. A., Neverov A. A. Rockburst hazard of rock mass during mining under open pit bottom at Sayak-1 deposit. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2025, no. 1, pp. 48—56. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.