Back to search

Extraction of gold from definitely processing ores and technogenic waste by their high-temperature treatment and subsequent centrifugal separation

One of the main problems of extracting gold from refractory mineral materials (ores and technogenic wastes) is that a significant proportion of its particles are less than 10 microns in size. Such microdispersed metal particles can be extracted only after they have been enlarged. This is possible by melting the mineral material: Au droplets are floated by gas bubbles. During the flotation process, the droplets are coagulated. Enlarged droplets are recovered by traditional enrichment methods. Purpose of the work is to study the possibility of using high-temperature treatment followed by blowing the melt to increase the extraction of gold from refractory ores and industrial waste by centrifugal separation. Two materials were chosen for research: enrichment tailings (Au content 1 g/t) and carbonate-silicate ore (Au content 2.7 g/t). Samples of ore and tailings were melted at temperatures of 1300 ºС and 1400–1450 ℃, respectively, and the resulting melts were purged with atmospheric air for 10 minutes. The resulting product was subjected to centrifugal separation and cyanidation. According to the results of the research, it was found that high-temperature processing of enrichment tailings, including melting of the material and its blowing, increases the extraction of gold into the concentrate of centrifugal separation by 51.4%, for carbonate-silicate ore, the extraction increased by 20%. The content of Au in the resulting concentrates is sufficient to be used for subsequent extraction of the metal at non-ferrous metallurgy enterprises.

Keywords: old, silver, copper, enrichment tailings, carbonate-silicate ore, melting, melt blowing, flotation, recovery, concentrate, intermediate product, sludge, centrifugal separation.
For citation:

Amdur A. M., Fedorov S. A., Matushkina A. N. Extraction of gold from definitely processing ores and technogenic waste by their high-temperature treatment and subsequent centrifugal separation. MIAB. Mining Inf. Anal. Bull. 2022;(11-1):95—106. [In Russ]. DOI: 10.25018/0236_1493_2022_111_0_95.

Acknowledgements:

The research was funded in accordance with the state assignment on science for Ural State Mining University №075-03-2022-401 dated 12.01.2022 ‘Development and environmental and economic substantiation of the technology for reclamation of land disturbed by the mining and metallurgical complex based on reclamation materials and fertilizers of a new type’.

Issue number: 11
Year: 2022
Page number: 95-106
ISBN: 0236-1493
UDK: 669.2+502.174.1+658.567.1
DOI: 10.25018/0236_1493_2022_111_0_95
Article receipt date: 16.06.2022
Date of review receipt: 14.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

Amdur A. M., Head of the Department of Chemistry, Ural State Mining University, 620144, Russian Federation, Ekaterinburg, Kuibysheva str., 30, е-mail: engineer-ektb@rambler.ru;
Fedorov S. A., Junior Researcher of the Research Laboratory of Disturbed Lands` and Technogenic Objects` Reclamation, Ural State Mining University, 620144, Russia, Ekaterinburg, Kuibysheva str., 30, Junior Researcher of Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences,
620016, Russian Federation, Ekaterinburg, Amundsena str., 101, е-mail: saf13d@mail.ru;
Matushkina A. N., Senior Researcher, JSC “Uralmekhanobr”, 620014, Russia, Ekaterinburg, Khokhryakova str., 87, е-mail: annamat87@mail.ru.

 

For contacts:
Bibliography:

1. Talalay A. G., Makarov A. B., Zobnin B. B. Technogenic deposits of the Urals, methods of their research and prospects for their processing. Mining Journal. 1997. no. 11−12. pp. 20−36.

2. Zavyalov S. S., Mamonov R. S. Mixed-type dry pretreatment technology for goldbearing ore. MIAB. Mining Inf. Anal. Bull. 2021;(11−1);338−345. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_338.

3. Lee W., Jung M., Han S., Park S., Park J. Simulation of layout rearrangement in the grinding/classification process for increasing throughput of industrial gold ore plant. Minerals Engineering. 2020. Vol. 157. pp. 1−13. DOI: 10.1016/j.mineng.2020.106545.

4. Li Q., Zhang Y., Liu X., Xu B., Yang Y., Jiang T. Improvement of Gold Leaching from a Refractory Gold Concentrate Calcine by Separate Pretreatment of Coarse and Fine Size Fractions. Minerals. 2017. no. 7(5). pp. 1−12. DOI: 10.3390/min7050080.

5. Konnova N. I. Technological assessment of the dressability of ore of gold-quartzcarbonate low-sulfide type. MIAB. Mining Inf. Anal. Bull. 2015. no. 9. pp. 74−76. [In Russ].

6. Aksenov A. V., Vasiliev A. A., Shvets A. A., Okhotin V. N. The use of ultrafine grinding in the processing of mineral raw materials. Izvestiya VUZov. Non-ferrous metallurgy. 2014. no. 2. pp. 20−25. [In Russ].

7. Bondar V. V. Equipment for processing refractory gold-bearing and technogenic ores. Zoloto i tekhnologii. 2018. no. 2 (40). pp. 74−75. [In Rus].

8. Celep O., Yazici EY, Kuzu M., Deveci H. Effect of ultra-fine grinding on extraction of gold and silver from a refractory flotation tailings by cyanide leaching. 26th International Mining Congress and Exhibition of Turkey (IMCET 2019). Turkey: TMMOB Maden Muhendisleri Odasi, 2019. pp. 826−833.

9. Rabieh A., Eksteen J. J., Albijanic B. The effect of grinding chemistry on cyanide leaching of gold in the presence of pyrrhotite. Hydrometallurgy. 2017. Vol. 173. pp. 115−124. DOI: 10.1016/j.hydromet.2017.08.013.

10. Syed S. Recovery of gold from secondary sources A review. Hydrometallurgy. 2012. no. 115−116. pp. 30−51.

11. Shamrai E. I., Yudakov A. A., Ksenik T. V., Tsybulskaya O. N., Medkov M. A., Bratskaya S.Yu., Ivannikov S. I.Comparative evaluation of possible solutions for the development of technology for low-volume heap leaching of finely dispersed gold from industrial waste. Issues of geology and integrated development of natural resources of East Asia: Fifth All-Russian scientific conference with international participation, October 02−04, 2018: collection of reports. Blagoveshchensk: IGiP FEB RAS, 2018. Vol. 2. pp. 31−34. [In Russ].

12. Aleksandrova T. N., Litvinova N. M., Bogomyakov R. V. On the issue of extracting finely dispersed gold from the sands of alluvial deposits. MIAB. Mining Inf. Anal. Bull. 2011;(2);505−512. [In Russ].

13. Kapustina G. G., Leonenko N. A., Kramar E. I. Agglomeration of gold in aluminosilicate matrices. Bulletin of the National Research Nuclear University MEPhI. 2021. V. 10, no. 2. pp. 124−128. DOI: 10.1134/S2304487X2102005X. [In Russ].

14. Kapustina G. G., Leonenko N. A., Shvets N. L. Agglomeration of ultrafine gold under laser action on mineral gold-bearing media. Khabarovsk: Pacific State University, 2017. 94 p. [In Russ].

15. Vatolin N. A., Amdur A. M., Fedorov S. A., Matushkina A. N. Motion of Dispersed Gold Droplets in Porous Bodies and Oxide Melts during Heating. Doklady Chemistry. 2015. Vol. 465, Part 1. pp. 265−267. DOI: 10.1134/S0012500815110051.

16. Amdur A. M., Pavlov V. V., Fedorov S. A. Flotation of dispersed gold drops in melts as an element of technological scheme of enrichment. MIAB. Mining Inf. Anal. Bull. 2020;(31):399−409. [In Russ]. DOI: 10.25018/0236-1493-2020-31−0-399−409.

17. Patent no. 161572 Russian Federation, IPC S22V 11/02, S22V 9/05.Device for enrichment of gold-bearing mineral material. A. M. Amdur, R. A. Apakashev, S.Ya. Davydov, A. N. Matushkin; applicant and patent holder FGBOU VO USGU. no. 2015131439/02; dec. 07/28/2015; publ. 04/27/2016, bul. no. 12. [In Russ].

18. Vatolin N. A., Amdur A. M., Pavlov V. V., Fedorov S. A. Mechanism of Flotation of Metallic Droplets in Oxide Melts. Russian Metallurgy (Metally). 2019. Vol. 2019. no. 2. pp. 97–100. DOI: 10.1134/S0036029519020289.

19. Patent no. 2690590 Russian Federation, IPC В03В 7/00, В03В 5/34. The method of centrifugal separation. Yu.P. Morozov, V. Z. Kozin, P. M. Penkov, E. A. Bekchurin, I.Kh. Khamidulin; applicant and patent holder Tail KO LLC. no. 2018129278; dec. 08/09/2018; publ. 06/04/2019, bul. no. 16. [In Russ].

20. Nikitina T.Yu., Petrov G. V. Current state and technological prospects for the use of low-toxic gold solvents for the processing of technogenic raw materials. Bulletin of the Magnitogorsk State Technical University of name G. I. Nosova. 2021. Vol. 19, no. 1. pp. 17–28. [In Russ].

21. Surimbaev B. N., Channels E. S., Bolotova L. S., Shalgymbaev S. T. Estimation of gravitational concentration of gold-bearing ore GRG. Mining sciences and technologies. 2020. no. 5 (2). pp. 92−103. DOI: 10.17073/2500-0632-2020-2-92−103. [In Russ].

22. Aleksandrova T. N., Gurman M. A., Kondratiev S. A. Problems of extracting gold from refractory ores in the South of the Far East region of Russia and some ways to solve them. Physico-technical problems of mineral development. 2011. no. 5. pp. 125−136. [In Russ].

23. Wang X., Qin W., Jiao F., Yang C., Cui Y., Li W., Zhang Z., Song H. Mineralogy and Pretreatment of a Refractory Gold Deposit in Zambia. Minerals. 2019. no. 9. pp. 1−16. DOI: 10.3390/min9070406.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.