Back to search

Drainage facilities with underway water intake in open pit mines

The methods, means and circuits of drainage of open pit mines are characterized. The package of measures aimed to prevent flow of surface and ground water in open pits, and to remove water from open pits beyond the excavation boundaries is described. The information on the power consumption by drainage facilities is given. It is emphasized that in many instances, the cost of dewatering in open pits is comparable with the cost of mineral and overburden haulage, and the minimum energy consumption by drainage facilities is ensured by pumping at the minimum ratio of the total pump head to the pump efficiency. It is found that the relationship between this ratio and delivery within the operational range of the head-capacity characteristic of a centrifugal pump has a gradually decreasing or extremal nature. For reducing energy spent for drainage in the warm season by 10–50%, it is proposed to perform underway water intake from the force main with the subsequent water spraying over pitwall. The accident-free operation conditions of the drainage circuits with the underway water intake are the use of motor drives with sufficient power reserve to increase the delivery and the presence of sufficient suction head at the pump inlet. Spraying of withdrawn water over benches and slopes heated by the sun allows intensification of air renewal and enables reduction of pit water discharge in water bodies and dust emission in atmosphere without overwetting of rocks in open pit mines.

Keywords: open pit mining, pit water, normal water inflow, drainage facility, drainage circuits, pipelines, motor drive, delivery, head, efficiency, suction head, power reserves, hydro-mechanical property, power consumption, operating regime, adjustment, energy efficiency, underway flow rate, spraying systems, air renewal.
For citation:

Штреслер К.А., e-mail:


Морин А. С., Мигунов В. И., Штреслер К. А., Чесноков В. Т. Карьерные водоотливные установки с путевым отбором воды // Горный информационно-аналитический бюллетень. – 2024. – № 3. – С. 130–140. DOI: 10.25018/0236_1493_2024_3_0_130.

Issue number: 3
Year: 2024
Page number: 130-140
ISBN: 0236-1493
UDK: 620.531
DOI: 10.25018/0236_1493_2024_3_0_130
Article receipt date: 03.07.2023
Date of review receipt: 01.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.01.2024
About authors:

A.S. Morin1, Dr. Sci. (Eng.), Assistant Professor, Head of Chair, e-mail:, ORCID ID: 0009-0008-0440-3241,
V.I. Migunov1, Graduate Student, Senior Lecturer, e-mail:,, ORCID ID: 0009-0004-7303-9579,
K.A. Shtresler1, Graduate Student, Senior Lecturer, Institute of Business Process Management, e-mail:, ORCID ID: 0000-0002-0659-1302,
V.T. Chesnokov1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0009-0005-7201-8749,
1 Institute of Nonferrous Metals, Siberian Federal University, 660025, Krasnoyarsk, Russia.


For contacts:

1. Rassudov A. V. Experience of open field development tube «Udachnay». Trudy Mezhdunarodnogo simpoziuma «Mirnyy-91»: Problemy razrabotki glubokikh kar'erov [Proceedings International Symposium on Surface Mining «Mirny-91»: The Problems of Mining in the Deep Open Pit Mines], Udachnyy, NITS «Master» , 1991, pp. 8—14. [In Russ].

2. Vigandt V. A. Hydro-geological problems of the development of diamond deposits. Gornyi Zhurnal. 2005, no. 7, pp. 83—87. [In Russ].

3. Abramov S. K., Gazizov M. S., Kostenko V. I. Zashchita kar'erov ot vody [Protection of quarries from water], Moscow, Nedra, 1976, 230 p.

4. Morin A. S., Migunov V. I., Shulgina K. A. Analysis of the amplitude versus frequency response characteristic of vibroacoustic signals in monitoring the technical condition of an open-pit dewatering plant. Ugol'. 2022, no. 10(1159), pp. 33—39. [In Russ]. DOI: 10.18796/0041-5790-2022-10-33-39.

5. Grishko A. P., Sheloganov V. I. Statsionarnye mashiny i ustanovki. 2-e izd. [Fixed machines and installations. 2nd edition], Moscow, Izd-vo «Gornaya kniga», 2007, 325 p.

6. Stashinov Y. P., Bochenkov D. A., Volkov V. V. Technical and power aspects of application of the adjustable electric drive on the main spillway mine installations. MIAB. Mining Inf. Anal. Bull. 2009, no. S8, pp. 202—209. [In Russ].

7. Morin A. S., Migunov V. I., Saveliev N. O. Patent RU 2791201, F04D 15/00; E02D 19/00. 06.03.2023. [In Russ].

8. Morin A. S., Brovina T. A., Borisov F. I., Demchenko I. I. Patent RU 2572100, E21F 5/04. 27.12.2015. [In Russ].

9. Morin A. S., Borisov F. I., Brovina T. A. Patent RU 2580329, E02D 19/10. 10.04.2016. [In Russ].

10. Borisov F. I., Morin A. S., Brovina T. A. Open pit water drainage facilities with «along the line» track consumption water flow rate in the areas of automobile roads moistening. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2017, no. 3, pp. 65—72.

11. Morin A. S., Migunov V. I. Patent RU 2738515, E02D 19/00. 12.05.2020. 14.12.2020. [In Russ].

12. Kovshov S. V., Kuletsky K. V., Letuev K. V., Navitskaite E. A. Dustiness reduction on working space of coal open pit with the sewage and drainage water help. MIAB. Mining Inf. Anal. Bull. 2019, no. S6, pp. 104—111. [In Russ]. DOI: 10.25018/0236-1493-2019-4-6-104-111.

13. Letuyev K. V., Kovshov S. V., Gridina E. B. The technology of hydrodedusting of coal pits’ auto roads using purified wastewater and drainage water. Ecology & Industry of Russia. 2020, vol. 24, no. 1, pp. 30—33. [In Russ]. DOI: 10.18412/1816-0395-2020-1-30-33.

14. Ogbonnaya J. E., Phil-Eze P. O. Challenges of quarrying activities for sustainable quality water resources in abakaliki and environs. Journal of Geography, Meteorology and Environment. 2020, vol. 3, no. 1, pp. 61—83.

15. Huang Z., Ge S., Jing D., Yang L. Numerical simulation of blasting dust pollution in open-pit mines. Applied Ecology and Environmental Research. 2019, vol. 17, no. 5, pp. 10313—10333. DOI: 10.15666/aeer/1705_1031310333.

16. Wang Z., Zhou W., Jiskani I. M., Ding X., Luo H. Dust pollution in cold region Surface Mines and its prevention and control. Environmental Pollution. 2022, vol. 292, article 118293. DOI: 10.1016/j.envpol.2021.118293.

17. Boente C., Millan-Martinez M., de la Campa A. M. S., Sanchez-Rodas D., de la Rosa J. D. Physicochemical assessment of atmospheric particulate matter emissions during open-pit mining operations in a massive sulphide ore exploitation. Atmospheric Pollution Research. 2022, vol. 13, no. 4, article 101391. DOI: 10.1016/j.apr.2022.101391.

18. Dragunskiy O. N. Breaking inversions in open pit mines using induced ventilation facilities. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 13—21. [In Russ]. DOI: 10.25018/0236-1493-201905-0-13-21.

19. Kia S., Flesch T. K., Freeman B. S., Aliabadi A. A. Atmospheric transport over open-pit mines: The effects of thermal stability and mine depth. Journal of Wind Engineering and Industrial Aerodynamics. 2021, vol. 214, article 104677.

20 Kovlekov I. I. Intensification of airing of deep open-pit diamond mine by tornado-like vortices. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-2, pp. 124—135. [In Russ]. DOI: 10.25018/0236_1493_2 022_52_0_124.

21. Morin A. S., Brovina T. A., Migunov V. I., Nuyhnevich A. S. Patent RU 2798172, E02D 19/00. 16.06.2023. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.