Back to search

Mechanism of coagulation under flotation of gold microdisper-sions with carrier minerals

The article presents the results of a study of thin sludge flotation with the help of carrier minerals – a solid wall. The influence of the wall on the hydrodynamic force acting on the motion of a particle can be taken into account by a correction, the expression for which includes a parameter that takes into account the intensity of motion of the particle and the medium for a given geometry of the system and the time t of their interaction. Moreover, in the presence of a wall, the correction due to the unsteadiness of the fluid flow will change as the value t–3/2. If there is no wall, then the corresponding correction will change as t–1/2. When interpreting the results of studying the induction time when gold grains stick to each other at different temperatures and the flotation rate constant of native gold of different sizes and samples, the concepts of hydrophobic attraction forces and the sliding effect water flow along the hydrophobic surface as a result of stratification of the near-wall gas-liquid layer or the release of nanobubbles from surface topography irregularities. It has been established that during the aggregation of polydisperse particles, the threshold energy of fast coagulation is lower than during the interaction of monodisperse particles, the aggregation of which requires a large depth of the potential well. When flotation of ores according to the scheme in three jets, the extraction of gold into commercial concentrate amounted to 90.19% against 82.93% according to the factory scheme; as a result of reducing the output of the finished concentrate by 20.52% Rel. the gold content in it increased by 32.93% rel.

Keywords: flotation, gold microdispersions, carrier minerals, wall effect, slip, correction, induction time, potential well, field experiment, flotation scheme.
For citation:

Evdokimov S. I., Guseva E. A., Konstantinova M. V., Vaitekunene E. L., Filushina E. V. Mechanism of coagulation under flotation of gold microdisper-sions with carrier minerals. MIAB. Mining Inf. Anal. Bull. 2023;(11-1):190-206. [In Russ]. DOI: 10.25018/0236_1493_2023_111_0_190.

Acknowledgements:

The study was supported by the Russian Science Foundation, Grant No. 23-27-00093.

Issue number: 11
Year: 2023
Page number: 190-206
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236_1493_2023_111_0_190
Article receipt date: 10.07.2023
Date of review receipt: 28.09.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

S.I. Evdokimov, Cand. Sci. (Eng.), Assistant Professor, North Caucasus Mining-and-Metallurgy Institute (State Technological University), 362021, Vladikavkaz, Republic of North Ossetia-Alania, Russia, e-mail: eva-ser@mail.ru,
E.A. Guseva1, Cand. Sci. (Eng.), Assistant Professor, e-mail: el.guseva@rambler.ru,
M.V. Konstantinova1, Cand. Sci. (Eng.), Assistant Professor, e-mail: mavikonst@mail.ru,
E.V. Filushina2,3, Cand. Sci. (Eng.), Assistant Professor, e-mail: ies_ief@mail.ru,
E.L. Vaitekunene2,3, Cand. Sci. (Eng.), Assistant Professor, e-mail: ies_vel@sibsau.ru, Siberian Fire and Rescue Academy of State Fire Service of Ministry of Emergency Situations of Russia, Zheleznogorsk, Russia,
1 Irkutsk National Research Technical University, 664074, Irkutsk, Russia,
2 Reshetnev Siberian State University of Science and Technology, 660037, Krasnoyarsk, Russia,
3 Siberian Federal University, 660041, Krasnoyarsk, Russia.

 

For contacts:

S.I. Evdokimov, e-mail: eva-ser@mail.ru.

Bibliography:

1. Matveeva T. N. Flotation reagents for finely disseminated gold extraction from unenriched ores and technogenic products. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 2, pp. 201—207. [In Russ]. DOI: 10.21177/1998-4502-2021-13-2-201-207.

2. Sanakulov K. S., Vorobyov A. E., Kozyrev E. N., Lianzi Zh. Physical and chemical properties of gold nanoparticles in ores and catalysts. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 4, pp. 676—684. [In Russ]. DOI: 10.21177/1998-4502-2022-14-4-676-684.

3. Evdokimov S. I., Gerasimenko T. E., Maksimov R. N., Klykov Yu. G. Analysis of conjugate heat and mass transfer during aerosol flotation of gold from placers. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 163—175. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-163-175.

4. Kondratiev V. V., Karlina A. I., Guseva E. A., Konstantinova M. V., Kleshnin A. A. Processing and application of ultra disperse wastes of silicon production in construction. IOP Conference Series: Materials Science and Engineering. 2018, vol. 463, no. 3, artile 032068. DOI: 10.1088/1757-899X/463/3/032068.

5. Malyukova L. S., Martyushev N. V., Tynchenko V. V., Kondratiev V. V., Bukhtoyarov V. V., Konyukhov V. Y., Bashmur K. A., Panfilova T. A., Brigida V. Circular mining wastes management for sustainable production of camellia sinensis. Sustainability. 2023, vol. 15, no. 15, artile 11671. DOI: 10.3390/su151511671.

6. Golik V. I., Dedegkaeva N. T., Kozhiev Kh. Kh., Belodedov A. A. Resource-saving technology of tailings utilization of non-ferrous metals beneficiation. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 2, pp. 225—233. [In Russ]. DOI: 10.21177/1998-4502-2023-15-2-225-233.

7. Kiventera J., Golek L., Yliniemi J., Ferreira V., Dejce J., Llikainen M. Utilization of sulphidictailinds from gold mine as a raw material in geopolymerization. International Journal of Mineral Processing. 2016, vol. 149, pp. 104—110. DOI: 10.1016/j.minpro.2016.02.012.

8. Gerasimenko T. E., Rubayeva I. O., Maksimov R. N., Vasiliev V. V. Peculiari-ties of poly disperse particle interaction in gold micro dispersions flotation processes. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 97—113. [In Russ]. DOI: 10.21177/19984502-2023-15-1-97-113.

9. Zhang J., Zhang Y., Richmond W., Wang H.-P. Processing technologies for gold-telluride ores. International Journal of Minerals, Metallyrgy and Materials. 2010, vol. 17, no. 1, pp. 1—10.

10. Kondratiev V. V., Nebogin S. A., Sysoev I. A., Gorovoy V. O., Karlina A. I. Description of the test stand for developing of technological operation of nano-dispersed dust preliminary coagulation. International Journal of Applied Engineering Research. 2017, vol. 12, no. 22, pp. 12809—12813.

11. Wang J., Yoon R.-H., Morris J. AFM surface force measurements conducted between gold surface treated in xanthate solutions. International Journal of Mineral Processing. 2013, vol. 122, pp. 13—21.

12. Kemppinen J., Aaltonen A., Sihvonen T., Leppinen J., Siren H. Xanthate degradation occurring in flotation process waters of a gold concentrator plant. Minerals Engineering. 2015, vol. 80, pp. 1—7.

13. Li Z., Yoon R.-H. AFM force measurements between gold and silver surface treated in ethyl xanthate solutions: Effect of applied potentials. Minerals Engineering. 2012, vol. 36-38, pp. 126—131.

14. Gul A., Kangal O., Sirkeci A. A., Onal G. Beneficiation of the gold bearing ore le gravity and flotation. International Journal of Minerals. Metallurgy and Materials. 2012, vol. 19, no. 2, pp. 106—110.

15. Valderrama L., Rubio J. High intensity conditioning and the carrier flotation of gold fine particles. International Journal of Mineral Processing. 1998, vol. 52, pp. 273—285.

16. Liu S., Xie L., Liu G., Zhang H., Zeng H. Understanding the hetero-aggregation mechanism among sulfide and oxide mineral particles driven by bifuctional surfactants: Intensification flotation of oxide minerals. Minerals Engineering. 2021, vol. 169, article 106928.

17. Bıçak Ö., Ekmekçi Z., Bradshaw D. J. Determination of flotability using JKMSI and Oxidation Index methods. Flotation’11, Cape Town, South Africa, 2011.

18. Allan G. C., Woodcock J. T. A review of the flotation of native gold and electrum. Minerals Engineering. 2001, vol. 14, pp. 931—962.

19. Golik V. I., Klyuev R. V., Martyushev N. V., Brigida V., Efremenkov E. A., Sorokova S. N., Mengxu Q. Tailings utilization and zinc extraction based on mechano-chemical activation. Materials. 2023, vol. 16, no. 2, article 726. DOI: 10.3390/ma16020726.

20. Bevilaqua D., Acciari H. A., Arena F. A., Benedetti A. V., Fugivara C. S., Filho G. T., Junior O. G. Utilization of electrochemical impedance spectroscopy for monitoring bornite (Cu5FeS5) oxidation by Acidithiobacillus ferrooxidans. Minerals Engineering. 2009, vol. 22, pp. 254—262.

21. Ekmekçi Z. Electrochemical methods in surface chemistry of sulfide minerals / Encylopedia of Surface and Colloid Science. Taylor & Francis, 2nd edition, 2011. DOI: 10.1081/ E-ESCS-120047361.

22. Kondratiev V. V., Govorkov A. S., Kolosov A. D., Gorovoy V. O. The development of a test stand for developing technological operation «flotation and separation of MD2. The deposition of nanostructures MD1» produce nanostructures with desired properties. International Journal of Applied Engineering Research. 2017, vol. 12, no. 22, pp. 12373—12377.

23. Hu Y., Sun W., Wang D. Electrochemistry of flotation of sulphide minerals. Tsinghua University Press and Springer, 2009, p. 304

24. Lehner S., Savage K., Ciobanu M., Cliffel D. E. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: An electrochemical study of synthetic pyrite. Geochimica et Cosmochimica Acta. 2007, vol. 71, pp. 2491—2509.

25. Marsden J. O., House C. I. The Chemistry of Gold Extraction. SME, USA, 2006.

26. Niu Y., Sun F., Xu Y., Cong Z., Wang E. Applications of electrochemical techniques in mineral analysis. Talanta. 2014, vol. 127, pp. 211—218.

27. Tadie M., Corin K. C., Wiese J. G., Nicol M., O’Connor C. T. An investigation into the electrochemical interactions between platinum group minerals and sodium ethyl xanthate and sodium diethyl dithiophosphate collectors: Mixed potential study. Minerals Engineering. 2015, vol. 83, pp. 44—52.

28. Verrelli D. I., Albijanic B. A comparison of methods for measuring the induction time for bubble-particle attachment. Minerals Engineering. 2015, vol. 80, pp. 8—13.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.