Back to search

Assessment and prediction of technical condition of dump truck life components using the Shewhart control charts

This article reviews the current methods available for the assessment and prediction of technical condition of dump trucks. The main shortage revealed are the high economic and human resources required for the implementation of these methods. The conclusion is drawn that it is necessary to develop a new approach to the technical condition management for the machine life components. The presented new method of technical condition assessment and prediction for the machine life components, as against the other methods of statistical control, assesses diagnostic parameters using the Shewhart control charts in combination with the conventional prediction of endurance of the machine components. In combination with the means of nondestructive control, the new procedure makes it possible to prepare basic data for making decisions on placement of equipment under repair for different periods of prediction. Implementation of this method of technical condition assessment and prediction in terms of the vital elements of dump trucks can enable prompt decision-making on maintenance and repair of the machines, which unconditionally can enhance operating efficiency of dump trucks.

Keywords: dump trucks, procedure of technical condition assessment of mining machines, technical condition prediction of mining machines, technical condition monitoring, intelligence transport systems, enhanced mining machine use efficiency, resource elements, mining machine diagnostics.
For citation:

Safiullin R. N., Safiullin R. R., Sorokin K. V. Assessment and prediction of technical condition of dump truck life components using the Shewhart control charts. MIAB. Mining Inf. Anal. Bull. 2024;(7):111-124. [In Russ]. DOI: 10.25018/0236_1493_2024_7_0_111.

Issue number: 7
Year: 2024
Page number: 111-124
ISBN: 0236-1493
UDK: 656.13
DOI: 10.25018/0236_1493_2024_7_0_111
Article receipt date: 19.12.2023
Date of review receipt: 19.02.2024
Date of the editorial board′s decision on the article′s publishing: 10.06.2024
About authors:

R.N. Safiullin1, Dr. Sci. (Eng.), Professor, e-mail:, ORCID ID: 0000-0002-8765-6461,
R.R. Safiullin1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0003-2315-3678,
K.V. Sorokin1, Graduate Student, e-mail:, ORCID ID: 0009-0006-3781-1407,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

R.N. Safiullin, e-mail:


1. Kuzin E. G., Pudov E. Yu., Dubinkin D. M. Analysis of failures of mining dump truck units under operating conditions. Mining Equipment and Electromechanics. 2021, no. 2, pp. 55—61. [In Russ]. DOI: 10.26730/1816-4528-2021-2-55-61.

2. Borisov S. V., Koltunova E. A., Kladiev S. N. Improving the structure of the simulation model of the traction asynchronous electric drive of a mine electric locomotive. Journal of Mining Institute. 2021, vol. 247, pp. 1—8. [In Russ]. DOI: 10.31897/PMI.2021.1.12.

3. Seliverstov Ya. A., Gergel G. Yu., Seliverstov S. A., Nikitin K. V. Development of intelligent transport systems based on mobile technologies and procedures for analyzing the social activity of the urban population. St Petersburg State Polytechnical University Journal Computer Science Telecommunications and Control Systems. 2018, vol. 11, pp. 47—64. [In Russ]. DOI: 10.18721/JCSTCS.11105.

4. Buzmakov S. A., Sannikov P. Yu., Kuchin L. S., Igosheva E. A., Abdulmanova I. F. Application of unmanned aerial photography for diagnosing technogenic transformation of the natural environment during the exploitation of an oil field. Journal of Mining Institute. 2023, vol. 260, pp. 180—193. [In Russ]. DOI: 10.31897/PMI.2023.22.

5. Marusin A., Tian H., Safiullin R., Safiullin R., Marusina I. Integral evaluation of the effectiveness of the implementation of automated technical means of controlling the movement of vehicles on the road. Proceedings of the 2022 International Conference on Engineering Management of Communication and Technology (EMCTECH), Vienna, Austria, 2022, pp. 1—4. DOI: 10.1109/EMCTECH55220. 2022.9934048.

6. Pronikov A. S. Parametricheskaya nadezhnost' mashin [Parametric reliability of machines], Moscow, Izd-vo MGTU imeni Baumana, 2002, 560 p.

7. Chetyrkin E. M. Statisticheskie metody prognozirovaniya [Statistical methods of forecasting], Moscow, Statistika, 1975, 200 p.

8. Safiullin R. N., Safiullin R. R., Ungefuk A. A., Sorokin K. V., Tian Haotian Patent RU 2792386, 24.01.2023.

9. Birger I. A. Tekhnicheskaya diagnostika [Technical diagnostics], Moscow, Mashinostroenie, 1978, 240 p.

10. Pashkovskiy G. S. Zadachi optimal'nogo obnaruzheniya i poiska otkazov v REA [Problems of optimal detection and search of failures in electronic equipment], Moscow, Radio i svyaz', 1981, 280 p.

11. Marinin M. A., Rakhmanov R. A., Dolzhikov V. V., Sushkova V. I. Study of the effect of blasted rock mass parameters on the performance of excavator-automobile complex. MIAB. Mining Inf. Anal. Bull. 2023, no. 9-1, pp. 35—48. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_35.

12. Nazarychev A. N., Dyachenok G. V., Sychev Yu. A. Study of the reliability of the traction electric drive of mining dump trucks based on the analysis of failures of its functional units. Journal of Mining Institute. 2023, vol. 261, pp. 363—373. [In Russ]. EDN HCLPJB.

13. Fedotov V. N., Chudakova N. V., Ismailov R. Automation of the technological process of spare parts at the car service company. E3S Web of Conferences. 2023, vol. 402, article 10009. DOI: 10.1051/ e3sconf/202340210009.

14. Atroshchenko V. A., Avksentiev S. Y., Makharatkin P. N., Trufanova I. S. Experimental hydrotransportation unit for testing material resistance of pipelines and parts of dredging pumps to hydroabrasive wear. Obogashchenie rud. 2021, no. 3, pp. 39—45. [In Russ]. DOI: 10.17580/or.2021.03.07.

15. Korshak A. А., Pshenin V. V. Determination of parameters of non-pump ejector gasoline vapor recovery unit. Science and Technologies: Oil and Oil Products Pipeline Transportation. 2023, vol. 13, no. 1, pp. 25—31. DOI: 10.28999/2541-9595-2023-13-1-25-31.

16. Katsuba Yu. N. Increasing the level of integration of unmanned technologies into the operation of agricultural machinery. Izvestiya Mezhdunarodnoy akademii agrarnogo obrazovaniya. 2023, no. 67, pp. 60—65. [In Russ]. EDN MTZELG.

17. Grigorescu S., Trasnea B., Cocias T., Macesanu G. Survey of deep learning techniques for autonomous driving. Journal of Field Robotics. 2022, vol. 37, no. 3, pp. 362—386. DOI: 10.1002/ rob.21918.

18. Katsuba Y. N., Grigoreva L. V. Application of artificial neural networks in the system of selfdiagnosis car. International Journal of Applied Engineering Research. 2017, vol. 12, pp. 246—248.

19. Babyr N. V. Topical themes and new trends in mining industry: Scientometric analysis and research visualization. International Journal of Engineering. 2024, vol. 37, no. 2, pp. 439—451. DOI: 10.5829/ije.2024.37.02b.18.

20. Brummelen V., O’Brien M., Gruyer D., Najjaran H. Autonomous vehicle perception: The technology of today and tomorrow. Transportation Research Part C: Emerging Technologies. 2018, vol. 89, pp. 384—406. DOI: 10.1016/j.trc.2018.02.012.

21. Lomazov V., Lomazov A., Petrosov D., Akupiyan O. Intelligent evaluation of implementation road infrastructure development program. Transportation Research Procedia. 2022, vol. 63, pp. 1089— 1094. DOI: 10.1016/j.trpro.2022.06.111.

22. Yang C., Zha M., Wang W., Liu K., Xiang C. Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: Review and recent advances under intelligent transportation system. IET Intelligent Transport Systems. 2020, vol. 14, no. 7, pp. 702—711. DOI: 10.1049/ iet-its.2019.0606.

23. Ladanov V. I. Application of on-board information and control systems on military vehicles. Almanac of the Perm Military Institute of National Guard Troops. 2022, no. 2(6), pp. 85—91. [In Russ]. EDN MYTYWT.

24. Ge J., Avedisov S. S., He C., Qin W. B., Sadeghpour M., Orosz G. Experimental validation of connected automated vehicle design among human-driven vehicles. Transportation Research Part C: Emerging Technologies. 2018, vol. 91, pp. 335—352. DOI: 10.1016/j.trc.2018.04.005.

25. Zhang L., Orosz G. Beyond-line-of-sight identification by using vehicle-to-vehicle communication. IEEE Transactions on Intelligent Transportation Systems. 2018, vol. 19, no. 6, pp. 1962—1972. DOI: 10.1109/TITS.2017.2747582.

26. Katsuba Y. N., Grigoreva L. V. Application of artificial neural networks in vehicles` design selfdiagnostic system for safety reasons. Transportation Research Procedia. 2017, vol. 20, pp. 283—287. Box.

27. Cao H., Gangakhedkar S., Ali A., Gharba M., Eichinger J. A 5G V2X testbed for cooperative automated driving. IEEE Vehicular Networking Conference, USA. 2016, pp. 1—4. DOI: 10.1109/VNC. 2016.7835939.

28. Aramrattana M., Larsson T., Jansson J., Nabo A. A simulation framework for cooperative intelligent transport systems testing and evaluation. Transportation Research Part F: Traffic Psychology and Behavior. 2019, vol. 61, pp. 268—280. DOI: 10.1016/j.trf.2017.08.004.

29. Degtyarev Yu. Classification of categorical structures of structural complexities based on prototypes in simple complexes. Proceedings of the 10th International conference on the application of fuzzy systems and soft computing. 2012, pp. 27—37.

30. Kondratiev A. A. Barriers to ITS implementation processes. Sbornik trudov Mezhdunarodnoy akademii transporta [Collection of proceedings of the International Academy of Transport], 2014, no. 17, pp. 89—95. [In Russ].

31. Kisulenko B. V. The concept of standardizing the safety of cars with a high level of automation. Avtomobil'naya promyshlennost'. 2019, no. 4, pp. 1—5. [In Russ]. EDN YUUICC.

32. Afanasyev A. S., Krainov A. N., Mikhalev Yu. V. Improving the methodology for diagnosing trucks using TEXA system scanners. Izvestiya Mezhdunarodnoy akademii agrarnogo obrazovaniya. 2023, no. 67, pp. 71—79. [In Russ]. EDN MBBYCM.

33. Safiullin R. N., Safiullin R. R., Efremova V. A. Method of complex assessment of on-board information and control systems on mining machines. MIAB. Mining Inf. Anal. Bull. 2023, no. 9-1, pp. 49—63. [In Russ]. DOI: 10. 25018/0236/1493/2023/91049.

34. Simonova L. A., Kapitonov A. A., Klochkova K. V. Construction of an intelligent superstructure for an automated diagnostic system for an internal combustion engine. Scientific and Technical Bulletin of the Volga Region. 2020, no. 12, pp. 110—113. [In Russ]. EDN PWDSDH.

35. Maharatkin P. N., Abdulaev E. K., Vishnyakov G. Yu., Botyan E. Yu., Pushkarev A. E. Increasing the efficiency of the functioning of quarry dump trucks based on justification of their rational speed using simulation modeling. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 237—250. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_237.

36. Afanasyev A., Egoshin A., Alekseev S. The choice substantiation method of road construction equipment for mining enterprises. Journal of Physics: Conference Series. 2019, vol. 1399, no. 3, article 033021. DOI: 10.1088/1742-6596/1399/3/033021.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.