Back to search

Method to predict rock displacements around development galleries at great depths in coal mining

The article discusses the method of softening and deformation stress prediction in enclosing rock mass in the influence zone of coal-face work and stress concentration assessment around development galleries with regard to the reaction force of mine roof support. The method is proposed to determine the size of the limiting state zone and to predict displacements around a development gallery in three problem formulations: formation of the limiting state zone with regard to the radial change in cohesion in the hydrostatic stress field; formation of residual strength and post-limiting state zones around development galleries; with regard to the pre-listed factors and including bedding and lamination in rock mass. It is found how the nonuniformity of enclosing rocks, their composition and structure, the mining depth and stress distribution influence the stress state behavior as well as the deformation with dilatancy of rock mass. The prediction method rests upon the analysis of numerous experimental observation data on rock displacements around development galleries. The developed geomechanical model of displacement prediction takes into account plastic softening and strength reduction in enclosing rock mass around development galleries in limiting and post-limiting states. Based on the comparison of theoretical and experimental results and using the revealed plastic dilatancy pattern, the method to predict displacements in limiting state and deformation zones in enclosing rock mass around development galleries is proposed.

Keywords: development gallery, displacement, rock, limiting and post-limiting state, roof support, dilatancy, roof support reaction, rock mass deformation.
For citation:

Protosenya A. G., Tretenkov I. V., Tulin P. K., Shubin A. A. Method to predict rock displacements around development galleries at great depths in coal mining. MIAB. Mining Inf. Anal. Bull. 2024;(8):63-78. [In Russ]. DOI: 10.25018/0236_1493_2024_8_0_63.

Acknowledgements:
Issue number: 8
Year: 2024
Page number: 63-78
ISBN: 0236-1493
UDK: 622.3
DOI: 10.25018/0236_1493_2024_8_0_63
Article receipt date: 26.04.2023
Date of review receipt: 25.12.2023
Date of the editorial board′s decision on the article′s publishing: 10.07.2024
About authors:

A.G. Protosenya1, Dr. Sci. (Eng.), Professor, e-mail: ProtosenyaAG@pers.spmi.ru, ORCID ID: 0000-0001-7829-6743,
I.V. Tretenkov1, Cand. Sci. (Geol. Mineral.), Assistant Professor, e-mail: TretenkovIV@pers.spmi.ru, ORCID ID: 0000-0002-1104-8080,
P.K. Tulin1, Cand. Sci. (Eng.), Assistant Professor, e-mail: TulinPK@pers.spmi.ru, ORCID ID: 0000-0002-0820-4759,
A.A. Shubin1, Cand. Sci. (Eng.), Assistant Professor, e-mail: ShubinAA@pers.spmi.ru, ORCID ID: 0000-0002-1255-4743,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

I.V. Tretenkov, e-mail: TretenkovIV@pers.spmi.ru.

Bibliography:

1. Verbilo P. E., Vilner M. A. Study of the jointed rock mass uniaxial compression strength anisotropy and scale effect. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 47—59. [In Russ]. DOI: 10.25018/02361493202262047.

2. Titov N. V., Ivanov C. I., Shurigin D. N. Study of the effect of bearing pressure at various stages of its formation in the geomechanical system. MIAB. Mining Inf. Anal. Bull. 2022, no. 12, special edition 8, 16 p. [In Russ].

3. Kazanin O. A., Ilyinets A. A. Ensuring the stability of mine workings in the preparation of mine sections of flat coal seams by three workings. Journal of Mining Institute. 2022, vol. 253, pp. 41—49. [In Russ]. DOI: 10.31897/PMI.2022.1.

4. Litvinskiy G. G., Smekalin E. S., Kladko V. I. Assessment methodology and criteria for stability of mine workings. Sbornik nauchnykh trudov GOU VPO LNR «DonGTU». 2020, no. 19, pp. 5—14. [In Russ].

5. Khazhyylay Ch. V., Eremenko V. A., Kosyreva M. A., Yanbekov A. M. In-situ rock mass failure envelope plotting using the Hoek–Brown criterion and RocData software toolkit. MIAB. Mining Inf. Anal. Bull. 2018, no. 12, pp. 92—101. [In Russ]. DOI: 10.25018/0236-1493-2018-12-0-92-101.

6. Kachurin N. M., Zakharov E. I., Soloviev D. A., Soloviev R. A. Stress-strain state of the rock massif and supports during construction of underground structures. News of the Tula state university. Sciences of Earth. 2022, no. 1, pp. 355—362. [In Russ]. DOI: 10.46689/2218-5194-2022-1-1-355-362.

7. Semencov V. V., Osmin D. V., Nifanov E. V. Stabilityofexcavation in the zone of mining work with stable roof. Bulletin of Scientific center VostNII for industrial and environmental safety. 2021, no. 3, pp. 14—25. [In Russ]. DOI: 10.25558/VOSTNII.2021.47.12.002.

8. Gorbuniva N. N. On the behavior of a rock massconsidering the Hoek-Brown Model. Mine Surveying Bulletin. 2018, no. 4 (125), pp. 62—66. [In Russ].

9. Gospodarikov A. P., Trofimov A. V., Kirkin A. P. Estimation of deformation characteristics of brittle rocks beyond the strength limit in the mode of uniaxial servohydraulic loading. Journal of Mining Institute. 2022, vol. 256, pp. 539—548. [In Russ]. DOI: 10.31897/PMI.2022.87.

10. Verbilo P. E., Iovlev G. A., Petrov N. E., Pavlenko G. D. Application of information modeling technologies for surveying support of mining operations. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 60—79. [In Russ]. DOI: 10.25018/02361493202262060.

11. Ignatiev S. A., Sudarikov A. E., Imashev A. Zh. Determination of the stressstrain state of rock mass and zone of inelastic deformation around underground mine excavation using modern methods of numerical modeling. Journal of Sustainable Mining. 2021, vol. 20, no. 3, article 7. DOI: 10.46873/23003960.1324.

12. Deev P. V., Tsukanov A. A. Influence of rock interface on the stress state of the massif in the vicinity of the mine. News of the Tula state university. Sciences of Earth. 2022, no. 1, pp. 448—457. [In Russ]. DOI: 10.46689/2218-5194-2022-1-1-448-457.

13. Tretenkov I. V., Luk'yanov V. G. Ustoychivost' gornykh vyrabotok [Stability of excavations], Tomsk, Izdatel'skiy dom TGU, 2015, 132 p.

14. Karasev M. A., Tien Tay Nguyen. A method for predicting the stress state of the lining of underground structures of quasi-rectangular and arched forms. Journal of Mining Institute. 2022, vol. 257, pp. 807—821. [In Russ]. DOI: 10.31897/PMI.2022.17.

15. Zuev B. Y. Modeling methodology of nonlinear geomechanical processes in block and laminated mountain massifs on models of equivalent materials. Journal of Mining Institute. 2021, vol. 250, pp. 542—553. [In Russ]. DOI: 10.31897/PMI.2021.4.6.

16. Aliev S. B., Demin V. F., Кainazarov A. S. & Miletenko N. A. Evaluation of the state of the near-contour mountain massif in joint lava with the adjacent mining development. Ugol’. 2023, no. 1. С. 35—39. [In Russ]. DOI: 10.18796/0041-5790-2023-1-35-39.

17. Mirsalimov V. M., Gasanov F. F. The solution of the elastoplastic problem for a fractured massif weakened by a circular hole. News of the Tula state university. Sciences of Earth. 2022, no. 1, pp. 332—345. [In Russ]. DOI: 10.46689/2218-5194-2022-1-1-332-345.

18. Zhabin A. B., Linnik Yu. N., Linnik V. Yu., Tsikh A. Features of mining and geological conditions of coal seams of the main basins of Russia. News of the Tula state university. Sciences of Earth. 2022, no. 1, pp. 250—260. [In Russ]. DOI: 10.46689/2218-5194-2022-1-1-250-260.

19. Demenkov P. A., Komolov V. V. Study of influence of the deep pit construction on soil mass in flat and spatial formulation. MIAB. Mining Inf. Anal. Bull. 2023, no. 6, pp. 97—110. DOI: 10.25018/0236149320236097.

20. Shashenko A. N., Solodyankin A. V., Smirnov A. V. Puchenie porod pochvy v vyrabotkakh ugol'nykh shakht [Excessive deformation of rock in the bottom of coal mine excavations], Dnepropetrovsk, TOV «LizunovPres», 2015, 256 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.