Bibliography: 1. Acharya B. S., Kharel G. Acid mine drainage from coal mining in the United States — An overview. Journal of Hydrology. 2020, vol. 588. DOI: 10.1016/j.jhydrol.2020.125061.
2. Chen Ming, Fengguo Li, Meixia Tao, Lanwen Hu, Yanli Shi, Youcun Liu Distribution and ecological risks of heavy metals in river sediments and overlying water in typical mining areas of China. Marine Pollution Bulletin. 2019, vol. 146, pp. 893—899. DOI: 10.1016/j.marpolbul.2019.07.029.
3. Olds W. E., Weber P. A., Pizey M. H., Pope J. Acid mine drainage analysis for the Reddale Coal Mine, Reefton, New Zealand. New Zealand Journal of Geology and Geophysics. 2016, vol. 59, no. 2, pp. 341—351. DOI: 10.1080/00288306.2016.1148056.
4. Yanin E. P. Features of the impact on the environment of the development of coal deposits. Ekologicheskaya ekspertiza. 2019, no. 6, pp. 2—59. [In Russ]. DOI: 10.36535/0869-1010-2019-06-1.
5. Sutapa R., Kaushik D. Coal mine water drainage: The current status and challenges. Journal of the Institution of Engineers India: Series D. 2020, vol. 101, no. 2, pp. 165—172. DOI: 10.1007/s40033020-00222-5.
6. Ribnikov P. A., Ribnikova L. S., Maksimovich N. G., Demenev A. D. Hydrogeology of the Kizel coal basin (Western Urals, Russia) in post-mining stage: the main problems and ways of their solution. MIAB. Mining Inf. Anal. Bull. 2020, no. 3-1, pp. 475—487. [In Russ]. DOI: 10.25018/0236-14932020-31-0-475-487.
7. Imaykin A. K., Imaykin K. K. Changes in hydrogeological conditions of the Shumikhinsky coal deposit (pre-urals) as a result of underground mining. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2022, vol. 333, no. 7, pp. 64—75. [In Russ]. DOI: 10.18799/24131830/2022/7/ 3482.
8. Maksimovich N. G., P'yankov S. V. Kizelovskiy ugol'nyy basseyn: ekologicheskie problemy i puti resheniya [Kizel coal basin: environmental problems and solutions], Perm, PGNIU, 2018, 288 p.
9. Pyankov S. V., Maximovich N. G., Khayrulina E. A., Berezina O., Andrey Shikhov A., Abdullin R. K. Monitoring acid mine drainage’s effects on surface water in the Kizel Coal Basin with Sentinel-2 satellite images. Mine Water and the Environment. 2021, vol. 40, pp. 606—621. DOI: 10.1007/ s10230-021-00761-7.
10. Wright I. A., Paciuszkiewicz K., Belmer N. Increased water pollution after closure of Australia’s longest operating under-ground coal mine: A 13-month study of mine drainage, water chemistry and river ecology. Water, Air and Soil Pollution. 2018, vol. 229, article 55.
11. Fetisova N. F. Investigation of the forms of metal migration in rivers affected by mine waters of the Kizelovsky coal basin. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021, vol. 332, no. 1, pp. 141—152. [In Russ]. DOI: 10.18799/24131830/2021/1/3007.
12. Menshikova E., Osovetsky B., Blinov S., Belkin P., Tomilina E., Badyanova I. Ochre particles in river sediments in coal mining areas (A study of the Kizel coal basin, Russia). Mine Water and the Environment. 2022, vol. 41, pp. 1040—1054. DOI: 10.1007/s10230-022-00905-3.
13. Mihalev V. V., Mackevich I. K. Modern morphometry of the Kama reservoir. Vodnoe khozyaystvo Rossii. 2010, no. 3, pp. 4—18. [In Russ].
14. Balintova M., Petrilakova A., Singovszka E. Study of metals distribution between water and sediment in the Smolnik Creek (Slovakia) contaminated by acid mine drainage. Chemical Engineering Transactions. 2012, vol. 28, pp. 73—78. DOI: 10.3303/CET1228013.
15. Munk L., Faure G., Pride D. E., Bigham J. M. Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado. Applied Geochemistry. 2002, vol. 17, no. 4, pp. 421—430. DOI: 10.1016/S0883-2927(01)00098-1.
16. Miroshnichenko S. A. Sources of iron formation in the surface waters of the Kama River within the Perm Territory. Vodnoe khozyaystvo Rossii. 2011, no. 6, pp. 9—82. [In Russ].
17. Baran A., Mierzwa-Hersztek M., Gondek K., Tarnawski M., Szara M., Gorczyca O., Koniarz T. The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environmental Geochemistry and Health. 2019, vol. 41, no. 6, pp. 2893—2910. DOI: 10.1007/s10653-019-00359-7.
18. Zakrutkin V. E., Gibkov E. V., Reshetnyak O. S., Reshetnyak V. N. River sediments as river waters' primary pollution indicator and secondary pollution source in east Donbass coal-mining areas. Izvestiya RAN. Seriya Geograficheskaya. 2020, vol. 84, no. 2, pp. 259—271. [In Russ]. DOI: 10.31857/ S2587556620020168.
19. Maksimovich N. G., Khmurchik V. Т., Berezina О. А. Forms of transfer of microelements in river network and their distribution in bottom sediments in coal mining regions.MIAB. Mining Inf. Anal. Bull. 2022, no. 11, pp. 52—66. [In Russ]. DOI: 10.25018/0236_1493_2022_11_0_52.
20. Miao X., Song M., Xu G., Hao Y., Zhang H. The accumulation and transformation of heavy metals in sediments of Liujiang River Basin in Southern China and their threatening on water security. International Journal of Environmental Research and Public Health. 2022, vol. 19, article 1619. DOI: 10.3390/ijerph19031619.