Back to search

Justification of rational caving shield angles and canopy paths of displacement in powered roof supports

The criteria of effective operation of powered roof supports (shields) are the angle of the caving shield inclination relative to the canopy and the trajectory of the canopy displacement in the plane perpendicular to the longwall face. The values of the inclination angle of the caving shield relative to the canopy are substantiated for the minimum mineable thickness of coal seams and for the minimum height of the powered support unit. For the maximum rock— steel friction coefficient f = 0.4, the angle of the caving shield inclination relative to the canopy should be at least 22° for the minimum mineable thickness of seams and at least 14–15° for the minimum height of shields, which corresponds to the friction coefficient f = 0.25–0.26. It is found that the main cause of the unsatisfactory operation of powered roof supports in coal mining under unstable or fractured immediate roof is the displacement of the canopy towards the goaf during powered support setting. Ideally, there should be no canopy displacements along the roof, but this is unachievable within the whole range of the shield support expandability due to the structural concept. However, it is allowable that the canopy displaces towards the face during the shield support setting over the whole range of its expandability since this has no adverse effect on the load applied to the support unit. The perfect trajectory of the canopy displacement is presented. The trajectory eliminates the canopy displacement towards the goaf during the shield support setting, and is achieved via the reasonable selection of the structural and kinematic parameters of the caving shield and other elements influencing formation of this trajectory.

Keywords: powered roof support (shield), caving shield inclination angle, expandability range, canopy displacement, goaf space, lemniscate, horizontal tensile stresses, shield support height, canopy displacement trajectory.
For citation:

Yu.V. Turuk, Sysoev N. I., Lugantsev B. B., Streltsov S. V., Bogomazov A. A. Justification of rational caving shield angles and canopy paths of displacement in powered roof supports. MIAB. Mining Inf. Anal. Bull. 2024;(4):134-144. DOI: 10.25018/0236_1493_2024_ 4_0_134.

Acknowledgements:
Issue number: 4
Year: 2024
Page number: 134-144
ISBN: 0236-1493
UDK: 622.23.05
DOI: 10.25018/0236_1493_2024_4_0_134
Article receipt date: 09.01.2024
Date of review receipt: 13.02.2024
Date of the editorial board′s decision on the article′s publishing: 10.03.2024
About authors:

Yu.V. Turuk1, Dr. Sci. (Eng.), Assistant Professor, Professor, e-mail: uraturuk@mail.ru, ORCID ID: 0000-0002-4257-0744,
N.I. Sysoev2, Dr. Sci. (Eng.), Professor, Professor, e-mail: sysoevngmo@gmail.com, ORCID ID: 0000-0002-0372-427Х,
B.B. Lugantsev2, Dr. Sci. (Eng.), Assistant Professor, Professor, e-mail: boris4721@mail.ru, ORCID ID: 0000-0002-8296-7922,
S.V. Streltsov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: streltcov_s@rambler.ru, ORCID ID: 0000-0003-4989-4327,
A.A. Bogomazov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: sbog@rambler.ru, ORCID ID: 0000-0002-7176-3393,
1 Shakhty Automobile Road Institute, Branch of the Platov South-Russian State Polytechnic University (NPI), 346500, Shakhty, Russia,
2 M.I. Platov South-Russian State Polytechnic University (NPI), 346428, Novocherkassk, Russia.

 

For contacts:

Yu.V. Turuk, e-mail: uraturuk@mail.ru.

Bibliography:

1. Kazanin O. I., Sidorenko A. A., Drebenstadt C. I. Intensive underground mining technologies: Challenges and prospects for the coal mines in Russia. Acta Montanistica Slovaca. 2021, vol. 26, no. 1, pp. 60—69. DOI: 10.46544/AMS.v26i1.05.

2. Brodny J. Analysis of the impact of unscheduled downtimes on their availability in machine operations. MAPE. 2018, vol. 1, no. 1, pp. 145—151. DOI: 10.2478/mape-2018-0019.

3. Sinha S., Chugh Y. P. Validation of critical strain technique for assessing stability of coal mine intersections and its potential for development of roof control plans. Journal of Rock Mechanics and Geotechnical Engineering. 2018, vol. 10, no. 2, pp. 380—389. DOI: 10.1016/j.jrmge.2017.10.003.

4. Szurgacz D., Brodny J. Analysis of the influence of dynamic load on the work parameters of a powered roof support’s hydraulic leg. Sustainability. 2019, vol. 11, no. 9, article 2570. DOI: 10.3390/ su11092570.

5. Kazanin O. I., Sidorenko A. A. Meshkov A. A. Organizational and technological principles of realizing the potential of modern high-performance stoping equipment. Ugol'. 2019, no. 12, pp. 4—12. [In Russ]. DOI: 10.18796/0041-5790-2019-12-4-13.

6. Zadkov D. A., Gabov V. V., Babyr N. V., Stebnev A. V., Teremetskaya V. A. Adaptable and energyefficient powered roof support unit. MIAB. Mining Inf. Anal. Bull. 2022, no. 6, pp. 46—61. [In Russ]. DOI: 10.25018/0236_1493_2022_6_0_46.

7. Buyalich G. D., Buyalich K. G., Umrikhina V. Yu. Study of falling roof vibrations in a production face at roof support resistance in the form of concentrated force. IOP Conference Series: Materials Science and Engineering. 2016, vol. 142, no. 1, article 012120. DOI: 10.1088/1757899X/142/1/012120.

8. Matveev V. A., Turuk Yu. V. A new approach to solving the problem of forecasting geomechanical processes in the atmosphere of a clean face. Perspektivnye tekhnologii dobychi i ispol'zovaniya ugley Donbassa: materialy Mezhdunarodnogo nauchno-prakticheskogo seminara [Promising technologies for the extraction and use of Donbass coal: Materials of International Scientific Practice Seminar], Novocherkassk, YuRGTU (NPI), 2009, pp. 145—155. [In Russ].

9. Khorin V. N. Raschet i konstruirovanie mekhanizirovannykh krepey [Calculation and design of mechanized support units], Moscow, Nedra, 1988, 256 p.

10. Yablonskiy A. A., Nikiforova V. M. Kurs teoreticheskoy mekhaniki, ch. 1 [Course of theoretical mechanics, part 1], Moscow, Vysshaya shkola, 1977, 368 p.

11. Korovkin Yu. A. Mekhanizirovannye krepi ochistnykh zaboev [Mechanized supports of mining faces], Moscow, Nedra, 1990, 414 p.

12. Sobik L., Brodny J., Buyalich G., Strelnikov P. Analysis of methane hazard in longwall working equipped with a powered longwall complex. E3S Web of Conferences. 2020, vol. 174, article 01011. DOI: 10.1051/e3sconf/202017401011.

13. Shurygin D. N., Vlasenko S. V., Turbor I. A. An establishment of dependencies of mutual influence of geological and mining factors on the stress-strain state of the rock mass. IOP Conference Series: Earth and Environmental Science. 2019, vol. 272, no. 2, article 022235. DOI: 10.1088/1755-1315/ 272/2/022235.

14. Gabov V. V. Adaptation of the section, mechanized support by improving the mechanical characteristics of the hydraulic drive of its hydraulic pillars. Mining Equipment and Electromechanics. 2016, no. 3, pp. 28—34. [In Russ].

15. Babyr N. V., Korolev A. I. Enhancement of powered cleaning equipment with the view of mining and geological conditions. IOP Conference Series: Earth and Environmental Science. 2018, vol. 194, no. 3, pp. 1504—1510. DOI: 10.1088/1755-1315/194/3/032004.

16. Kozlov V. V. Analysis of the dynamics of the loading of the support section during the movement of a mechanized complex along a curved trajectory. Ugol'. 2019, no. 12, pp. 38—39. [In Russ]. DOI: 10.18796/0041-5790-2019-12-38-39.

17. Szurgacz D., Brodny J. Adapting the powered roof support to diverse mining and geological conditions. Energies. 2020, vol. 405, no. 13. DOI: 10.3390/en13020405.

18. Pavlenko M. V., Khaidina M. P., Kuziev D. A., Pihtorinskiy D., Muratov A. Z. Impacts of the combine harvester in the production of coal to increase methane recovery array in the workspace lava. Ugol'. 2019, no. 4, pp. 8—11. [In Russ]. DOI: 10.18796/0041-5790-2019-4-8-11.

19. Gendler S. G., Prokhorova E. A. Risk-based methodology for determining priority directions for improving occupational safety in the mining industry of the Arctic Zone. Resources. 2021, vol. 3, no. 10, pp. 1—14. DOI: 10.3390/resources10030020.

20. Thang P. D., Thang H. H., Phuc L. Q. Technological solutions for intensive working of medium thick inclined coal seams in difficult conditions in the mines of the Quang Ninh coal basin. Sustainable Development of Mountain Territories. 2019, vol. 11, no. 1, pp. 105—109.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.