Back to search

Justification of the longwall panel entries support technology when mining gently inclined coal seams at large depths

The analysis of domestic and foreign experience in ensuring stability of the panel entries, outlining the longwall panels in coal mines is presented. It is shown that with increasing the depth of mining operations to provide the entries stability by leaving the pillars there is a need to increase the size of the pillars, thus increasing the operating losses of coal. The pillars create a stress shadow zones, which complicates the mining of adjacent seams, and may also create the hazards of rockbursts. The article considers the technologies of panel entries maintenance at pillarless longwall mining system, including the choice of the form and sizes of the cross-section of panel entries, parameters of the support pattern, support reinforcement in the zone of the longwall face abutment pressure, parameters of the supporting constructions on the border with the gob area. Separately, the experience of Chinese coal mines in applying pillarless mining system for mining thick seams with top coal caving is described. The effectiveness of using steel pipes filled with concrete as supporting constructions at the border with the gob area is noted. With regard to the geological and mining-technical conditions of the mines of the Eastern Donbass, the possibilities of using the various supporting constructions to maintain the longwall entries behind the longwall are considered. It is shown, that for the thin seams, where panel entries is developing with the cut-off of the surrounding rock layers, the application of the supporting constructions, which includes the rock from the cut-off, is the most perspective way of supporting. The analysis of the possible technologies of erection of the supporting constructions is made, the directions of improvement of technological schemes of entries development and maintaining the for the conditions of the mines of the Eastern Donbass are defined.

Keywords: coal, gently inclined seams, mine, development depth, longwall panel, gob area, panel entries maintenance, supporting constructions, efficiency.
For citation:

Kazanin O. I., Sidorenko A. A., Evsiukova A. A., Zilu Liu Justification of the longwall panel entries support technology when mining gently inclined coal seams at large depths. MIAB. Mining Inf. Anal. Bull. 2023;(9-1):5-21. [In Russ]. DOI: 10.25018/0236_1493_ 2023_91_0_5.

Issue number: 9
Year: 2023
Page number: 5-21
ISBN: 0236-1493
UDK: 622.268.6
DOI: 10.25018/0236_1493_2023_91_0_5
Article receipt date: 02.05.2023
Date of review receipt: 29.05.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

O.I. Kazanin1, Dr. Sci. (Eng.), Professor of Russian Academy of Sciences, e-mail:, ORCID ID: 0000-0001-9663-6713,
A.A. Sidorenko1, Cand. Sci. (Eng.), Assistant Professor, e-mail, ORCID ID: 0000-0003-4224-193X,
A.A. Evsiukova1, Graduate Student, e-mail:, ORCID ID: 0000-0003-3513-7587,
Zilu Liu1, Graduate Student, e-mail, ORCID ID: 0000-0001-5738-9254,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

O.I. Kazanin, e-mail:


1. Soloviev G. I. Kasyanenko A. L., Nefedov V. E., Poddubny E. I. On the influence of the stiffness of the prodol-baltic grip on the stability of the arching grip of the excavation. Problemy gornogo davleniya. 2020, vol. 1, no. 38-39, pp. 47—56. [In Russ].

2. Le Q. P., Zubov V. P., Phung M. D. Improvement of the loading capacity of narrow coal pillars and control roadway deformation in the longwall mining system. A case study at Khe Cham Coal Mine (Vietnam). Inżynieria Mineralna. 2020, vol. 1, no. 2, pp. 115—122. DOI: 10.29227/ IM-2020-02-15.

3. Piven Yu. A., Vasyutina V. V., Kanin V. A. Improvement of the non-cellular ways of protection of preparatory mining excavations. Zhurnal teoreticheskoy i prikladnoy mekhaniki. 2022, no. 2 (79), pp. 60—65. [In Russ].

4. Malysheva N. N., Malisheva N. M. Influence of the time of entry into service of the security structure on the effectiveness of maintaining excavation in the mine «Rassvet-1». Metallurgiya i materialovedenie: Sbornik nauchnykh trudov GOU VPO LNR «DonGTU», 2020, no. 18, pp. 50—57.

5. Ignatov E. V. Status and main objectives of development of the long-stone development system at Kuzbass coal mines: A brief review. Journal of mining and geotechnical engineering. 2019, no. 4, pp. 30—49. [In Russ].

6. Golubev D. D. Razrabotka tekhnologiy vyemki pologikh plastov uglya, sklonnogo k samovozgoraniyu [Development of technologies for excavation of flat seams of coal prone to spontaneous combustion], Candidate’s thesis, Saint-Petersburg, SPGU, 2021, 22 p.

7. Liu Z. L., Ma Z. G., Li Y., Gong P., Li K. L., Liu W. A study on axial compression performance of large diameter-thickness ratio concrete-filled gas drainage steel pipe. Advances in Civil Engineering. 2021, vol. 2021, article 1479196. DOI: 10.1155/2021/1479196.

8. Gao Y., Liu D., Zhang X., He M. Analysis and optimization of entry stability in underground longwall mining. Sustainability. 2017, vol. 9, no. 11, article 2079. DOI: 10.3390/su9112079.

9. Fang Y., Liu C., Yang H., Yang L. Axial behaviour of concrete-filled corrugated steel tubular column embedded with structural steel. Journal of Constructional Steel Research. 2020, vol. 170, pp. 3—7. DOI: 10.1016/j.jcsr.2020.106064.

10. Ahmed M., Liang Q. Q., Patel V. I., Hadi M. N. Behavior of circular concrete-filled double steel tubular slender beam-columns including preload effects. Engineering Structures. 2020, vol. 220, pp. 322—366. DOI: 10.1016/j.engstruct.2020.111010.

11. Wang P., Ding L., Ma Y. J., Feng T., Sun G. J., Zhu Y. J., Zuo J. Wang P. et al. A case study on gob-side entry retaining technology in the deep coal mine of Xinjulong, China. Advances in Civil Engineering. 2020, vol. 2020, article 8849093. DOI: 10.1155/2020/8849093.

12. Zaydenvarg V. E., Sobolev V. V., Snytkin I. I. Tekhnologicheskie skhemy razrabotki plastov na ugol'nykh shakhtakh. Ch. 1 [Technological schemes of reservoir development in coal mines, part 1], Moscow, IGD im. A.A. Skochinskogo, 1991, 127 p.

13. Ahmed M., Liang Q. Q., Patel V. I., Hadi M. N. Numerical analysis of axially loaded circular high strength concrete-filled double steel tubular short columns. Thin-Walled Structures. 2019, vol. 138, pp. 105—116. DOI: 10.1016/j.tws.2019.02.001.

14. Zubov V. P., Kuang F. L. Development of resource-saving technology of mining flat coal seams with hard-to-cut roof rocks (by example of mines of Quang Ninh coal basin). Journal of Mining Institute. 2022, vol. 257, pp. 795—806. [In Russ]. DOI: 10.31897/pmi.2022.72.

15. Ning J., Wang J., Bu T., Hu S., Liu X. An innovative support structure for gob-side entry retention in steep coal seam mining. Minerals. 2017, vol. 7, no. 5, article 75. DOI: 10.3390/ min7050075.

16. Sui Y., Tu Y., Guo Q., Zhang J., Ke F. Study on the behavior of multi-cell composite T-shaped concrete-filled steel tubular columns subjected to compression under biaxial eccentricity. Journal of Constructional Steel Research. 2019, vol. 159 pp. 215—230. DOI: 10.1016/j. jcsr.2019.04.033.

17. Wang Z., Zhou X., Wei F., Li M. Performance of special-shaped concrete-filled square steel tube column under axial compression. Advances in Civil Engineering. 2020, vol. 2020. DOI: 10.1155/2020/1763142.

18. Xie S. R., Pan H., Chen D. D., Zeng J. C., Song H. Z., Cheng Q., Li Y. H. Stability analysis of integral load-bearing structure of surrounding rock of gob-side entry retention with flexible concrete formwork. Tunnelling and Underground Space Technology. 2020, vol. 103, article 103492. DOI: 10.1016/j.tust.2020.103492.

19. Gong P., Ma Z., Zhang R. R., Ni X., Liu F., Huang Z. Surrounding rock deformation mechanism and control technology for gob-side entry retaining with fully mechanized gangue backfilling mining: a case study. Shock and Vibration. 2017, vol. 2017, article 6085941. DOI: 10.1155/2017/6085941.

20. Gong P., Ma Z., Ni X., Zhang R. R. Floor heave mechanism of gob-side entry retaining with fully-mechanized backfilling mining. Energies. 2017, vol. 10, no. 12, article 2085. DOI: 10.3390/en10122085.

21. Luan H., Jiang Y., Lin H., Li G. Development of a new gob-side entry-retaining approach and its application. Sustainability. 2018, vol. 10, no. 2, article 0470. DOI: 10.3390/su10020470.

22. Yang J., He M., Cao C. Design principles and key technologies of gob side entry retaining by roof pre-fracturing. Tunnelling and Underground Space Technology. 2019, vol. 90, pp. 309—318. DOI: 10.1016/j.tust.2019.05.013.

23. Zhang G. C., Tan Y. L., Liang S. J., Jia H. G. Numerical estimation of suitable gob-side filling wall width in a highly gassy longwall mining panel. International Journal of Geomechanics. 2018, vol. 18, no. 8, p. 91. DOI: 10.1061/(ASCE)GM.1943-5622.0001217.

24. Xiao-Ming S., Gan L., Peng S., Chengyu M., Chengwei Z., Qi, L., Xing X. Application research on gob-side entry retaining methods in no. 1200 working face in Zhongxing mine. Geotechnical and Geological Engineering. 2019, vol. 37, pp. 185—200. DOI: 10.1007/s10706018-0602-z.

25. Belodedov A. A. Nauchnoe obosnovanie intensivnoy tekhnologii podzemnoy razrabotki tonkikh i sredney moshchnosti ugol'nykh plastov dlya kompleksnogo ispol'zovaniya dobyvaemogo syr'ya [Scientific substantiation of intensive technology of underground mining of thin and medium thickness of coal seams for the integrated use of extracted raw materials], Doctor’s thesis, Novocherkassk, YuRGPU (NPI), 2021, 40 p.

26. Ignatiev S. A., Sudarikov A. E., Imashev A. J. Modern mathematical methods for forecasting the conditions of maintaining and securing mining excavations. Journal of Mining Institute. 2019, vol. 238, pp. 371—375. [In Russ]. DOI: 10.31897/pmi.2019.4.371.

27. Zaydenvarg V. E., Sobolev V. V., Snytkin I. I. Tekhnologicheskie skhemy razrabotki plastov na ugol'nykh shakhtakh. Ch. 1-2 [Technological schemes of seam development at coal mines, part 1-2], Lyubertsy, IGD im. A.A. Skochinskogo, 1991, 333 p.

28. Kazanin O. I., Dolotkin Y. N., Skrylnikov I. N. Skrylnikov I. V. The use of security structures to maintain mine workings in coal mines. MIAB. Mining Inf. Anal. Bull. 2011, no. 1, pp. 34—39. [In Russ].

29. Protosenya A., Vilner M. Assessment of excavation intersections’stability in jointed rock masses using the discontinuum approach. Rudarsko-geološko-naftni Zbornik. 2022, vol. 38, no. 2, pp. 137—147. DOI: 10.17794/rgn.2022.2.12.

30. Sidorenko A. A., Dmitriev P. N., Alekseev V. Yu., Sidorenko S. A. Improvement of technological schemes of mining of coal seams prone to spontaneous combustion and rock bumps. Journal of Mining Institute. 2023, pp. 1—13. DOI: 10.31897/pmi.2023.37.

31. Gospodarikov A. P., Trofimov A. V., Kirkin A. P. P. Estimation of deformation characteristics of brittle rocks beyond the limit of strength in single axis servohydraulic loading. Journal of Mining Institute. 2022, vol. 256, pp. 539—548. [In Russ]. DOI: 10.31897/pmi.2022.87.

32. Karpov G. N., Kovalski E. R., Nosov A. A. Longwall recovery room erecting method for flat coal seam mining. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 54—67. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_54.

33. Verbilo P., Karasev M., Belyakov N., Iovlev G. Experimental and numerical research of jointed rock mass anisotropy in a three-dimensional stress field. Rudarsko-geološko-naftni Zbornik. 2022, vol. 37, no. 2, pp. 109—122. DOI: 10.17794/rgn.2022.2.10.

34. Gospodarikov A. P., Zatsepin M. A., Vykhodtsev Ya. N., Nguen C. T. Numerical modeling of seismic wave impact on enclosing rock mass surrounding underground structures. MIAB. Mining Inf. Anal. Bull. 2022, no. 7, pp. 116—130. [In Russ]. DOI: 10.25018/0236_1493_2022_7_0_116.

35. Nikiforov A. V., Vinogradov E. A., Kochneva A. A. Analysis of multiple seam stability. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 2, pp. 1132—1139.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.