Back to search

Change in abrasivity of mechanical admixture particles in fluids in deep-well pumping

Design of dewatering wells in open pit mines is described. Such wells are mostly equipped with electrically driven deep-well centrifugal pumps, and the error-free running time of these pumps depends on the rate of hydro-abrasive wear of the pump stages. In this manner, detection and analysis of hidden features in the process of the hydro-abrasive wear of electric centrifugal pump units, as well as the validation of engineering solutions aimed at expanding the uptime of the deep-well pumps is of the theoretical and practical significance. The procedure and workbench for the accelerated resource testing of the guide vanes, impeller and inter-stage sealing of electric centrifugal pumps meant for operation in dewatering wells in open pit mines and quarries, under conditions of high concentration of solid abrasive particles in pumped-out fluids are described. It is shown that the main factors which govern the rate of the hydro-abrasive wear of the pump stages are the hardness, size and the shape of abrasive particles, the concentration of mechanical impurities in the pump fluids, and the operating mode of the deep-well electric centrifugal pump. For reducing the hydro-abrasive wear rate in the pump units, the authors propose to add the electric centrifugal pump configuration with an inlet device–a self-cleaning slot pre-filter of an original design, as well as with an extension of a tubing string.

Keywords: dewatering well, slot filter, deep-well electric centrifugal pump, string extension, pump stages, mechanical admixtures, hydro-abrasive wear, abrasivity index, uptime extension.
For citation:

Shishlyannikov D. I., Korotkov Yu. G., Ivanchenko A. A., Dremina D. I., Kartavtsev V. K. Change in abrasivity of mechanical admixture particles in fluids in deep-well pumping. MIAB. Mining Inf. Anal. Bull. 2024;(7):125-141. [In Russ]. DOI: 10.25018/0236_ 1493_2024_7_0_125.

Acknowledgements:

The study was supported by the Ministry of Science and Higher Education of the Russian Federation, Project No. FSNM-2023-0005.

Issue number: 7
Year: 2024
Page number: 125-141
ISBN: 0236-1493
UDK: 622.276
DOI: 10.25018/0236_1493_2024_7_0_125
Article receipt date: 25.10.2023
Date of review receipt: 28.02.2024
Date of the editorial board′s decision on the article′s publishing: 10.06.2024
About authors:

D.I. Shishlyannikov1, Dr. Sci. (Eng.), Assistant Professor, Professor, e-mail: dish844@gmail.com,
Yu.G. Korotkov1, Graduate Student, e-mail: korotkov1197@mail.ru,
A.A. Ivanchenko1, Senior Lecturer, e-mail: anna_ivanchenko94@mail.ru,
D.I. Dremina1, Assistant, e-mail: dreminadi9@gmail.com,
V.K. Kartavtsev1, Assistant, e-mail: vadk10@yandex.ru,

 

For contacts:

D.I. Dremina, e-mail: dreminadi9@gmail.com.

Bibliography:

1. Alexandrov V., Trufanova I. The Kachkanarsky MCC iron ore processing tailings slurry hydraulic transport parameters. International Conference on Transport and Sedimentation of Solid Particles. 2019, vol. TS 19, pp. 57—65.

2. Koteleva N., Frenkel I. Digital processing of seismic data from open-pit mining blasts. Applied Sciences (Switzerland). 2021, vol. 11, no. 1, article 383. DOI: 10.3390/app11010383.

3. Gülich J. F. Centrifugal pumps. Berlin, Heidelberg: Springer-Verlag, 2014, 1146 p.

4. Haiwen Zhu, Jianjun Zhu, Risa Rutter, Jiecheng Zhang, Hong-Quan Zhang Sand erosion model prediction, selection and comparison for electrical submersible pump (ESP) using CFDmethod. Proceedings of the ASME, 5th Joint US-European Fluids Engineering Summer Conference FEDSM-2018, Montreal, Quebec, Canada. 2018, pp. 101—108.

5. Morrison G., Yi Chen, Steck D., Yiming Chen, Changrui Bai, Abhay Patil Effect of gas presence on erosive wear of split-vane electrical submersible pump. Texas A&M University, College Station, TX 46th Turbomachinery & 33rd pump symposia. Houston, Texas. 2017, pp. 80—86.

6. Korzhev A. A., Bolshunova O. M., Voytyuk I. N., Vatlina A. M. Mathematical simulation of transient operation modes of an electric drive of a centrifugal pump for a slurry pipeline. Scientific Conference on Energy, Environmental and Construction Engineering-2019. 2019, vol. 140. DOI: 10.1051/ e3sconf/201914004012.

7. Shabalov M. Yu., Zhukovskiy Yu. L., Buldysko A. D., Gil B., Starshaia V. V. The influence of technological changes in energy efficiency on the infrastructure deterioration in the energy sector. Energy Reports. 2019, vol. 7, pp. 2664—2680. DOI: 10.1016/j.egyr.2021.05.001.

8. Giro R. A., Bernasconi G., Giunta G., Cesari S. A data-driven pipeline pressure procedure for remote monitoring of centrifugal pumps. Journal of Petroleum Science and Engineering. 2021, vol. 205, article 108845. DOI: 10.1016/j.petrol.2021.108845.

9. Costa E. A., de Abreu O. S. L., Silva T. D. O., Ribeiro M. P., Schnitman L. A Bayesian approach to the dynamic modeling of ESP-lifted oil well systems: An experimental validation on an ESP prototype. Journal of Petroleum Science and Engineering. 2021, vol. 205, article 108880. DOI: 10.1016/j.petrol.2021.108880.

10. Zhu H., Zhu J., Lin Z., Zhao Q., Rutter R., Zhang H.-Q. Performance degradation and wearing of Electrical Submersible Pump (ESP) with gas-liquid-solid flow: Experiments and mechanistic modeling. Journal of Petroleum Science and Engineering. 2021, vol. 200, article 108399. DOI: 10.1016/j. petrol.2021.108399.

11. Iakovleva E. V., Sychev Yu. A. The complex system of power quality control and improvement for minimization of deleterious effect on environment in conditions of oil production enterprises. Journal of Ecological Engineering. 2017, vol. 18, no. 3, pp. 43—47. DOI: 10. 12911/22998993/69356.

12. Filatova I., Nikolaichuk L., Zakaev D., Ilin I. Public-private partnership as a tool of sustainable development in the oil-refining sector: Russian case. Sustainability (Switzerland). 2021, vol. 13, no. 9, article 5153. DOI: 10.3390/su13095153.

13. Zhukovskiy Y. L., Batueva D. E., Buldysko A. D., Gil B., Starshaia V. V. Fossil energy in the framework of sustainable development: analysis of prospects and development of forecast scenarios. Energies. 2021, vol. 14, article 5268. DOI: 10.3390/en14175268.

14. Vasilyev V. E., Kholmskiy A. V., Sankovsky A. A. Determination of main vertical ore-lift shaft location in two planes. IOP Conference Series: Earth and Environmental Science. 2018, vol. 194, no. 8, article 082043. DOI: 10.1088/1755-1315/194/8/082043.

15. Bolobov V., Chupin S., Bochkov V. About increasing wear resistance of rock-breaking tool to abrasion by using mechanical and thermo-mechanical treatment. International Review of Mechanical Engineering. 2017, vol. 15, no. 11, pp. 301—304. DOI: 10.15866/ireme.v11i5.11581.

16. Ostrovsky V. G., Pescherenko S. N. Bench modeling of corrosion-abrasive destruction of guide devices of oil pumps. Scientific Research and Innovation. 2010, vol. 4, no. 1, pp. 86—88. [In Russ].

17. Ostrovsky V. G., Zverev V. Yu. Stand for testing stages of electric centrifugal pumps in oil fields. Minerals and Mining Engineering. 2017, no. 7, pp. 102—106. [In Russ].

18. Perissinotto R., Monte Verde W., Biazussi J. L., Bulgarelli N. A. V., Fonseca W. D. P., de Castro M. S., Franklin E., Bannwart A. C. Flow visualization in centrifugal pumps. A review of methods and experimental studies. Journal of Petroleum Science and Engineering. 2021, vol. 203, article 108582. DOI: 10.1016/j.petrol.2021.108582.

19. Chang L., Yang C.-Y., Zhang X.-M., Xu Q., Guo L.-J. Experimental study on pressurization property of three-stage centrifugal multiphase pump on gas-liquid two-phase flow conditions. Journal of Engineering Thermophysics. 2021, vol. 42, no. 5, pp. 1233—1237.

20. Bulgarelli N. A. V., Biazussi J. L., Monte Verde W., Perles C. E., de Castro M. S., Bannwart A. C. Experimental investigation on the performance of Electrical Submersible Pump (ESP) operating with unstable water/oil emulsions. Journal of Petroleum Science and Engineering. 2021, vol. 197, article 107900. DOI: 10.1016/j.petrol.2020.107900.

21. Boikov A., Savelev R., Payor V., Potapov A. Universal approach for dem parameters calibration of bulk materials. Symmetry. 2021, vol. 13, no. 6. DOI: 10.3390/sym13061088.

22. Ostrovsky V. G., Pescherenko M. P. The influence of leaks on the performance characteristics and reliability of oil pumps. Scientific research and innovation. 2011, vol. 5, no. 2, pp. 171—176. [In Russ].

23. Vasilyeva M. A. Equipment for generating running magnetic fields for peristaltic transport of heavy oil. 2017 International Conference on Industrial Engineering, Applications and Manufacturing, Proceedings. 2017, 8076356.

24. Vasilyeva M. A. Modeling of wave processes when the heterogeneous flow is moving in a low-frequency magnetic peristaltic pump of pulsating type. Vibroengineering Procedia. 2019, no. 25, pp. 111—115. DOI: 10.21595/vp.2019.20751.

25. Alexandrov V. I., Vasilyeva M. A. Express-diagnosis of the technical state slurry pumps in systems hydrotransport processing tails of ore. Innovation-Based Development of the Mineral Resources Sector: Challenges and Prospects: 11th conference of the Russian-German Raw Materials, 2018. 2019, pp. 273—282.

26. Yakovlev A. L., Savenok O. V. Analysis of the effectiveness of the equipment used and possible causes of failure during the intensification of oil production in the fields of the Krasnodar Territory. MIAB. Mining Inf. Anal. Bull. 2016, no. 5, pp. 149—163. [In Russ].

27. Lykova N. A. Protection of ESP from clogging: an integrated approach. Inzhenernaya praktika. 2016, no. 4, pp. 44—50. [In Russ].

28. Lykova N. A. Equipment for ESP operation under conditions of intensive removal of mechanical impurities. Inzhenernaya praktika. 2017, no. 3, pp. 58—62. [In Russ].

29. Zakatov O. P., Barkhatov S. P., Ustinova Ya. V., Semenov A. S. Prospects for using the BU 1500/900 DER drilling rig for ultra-deep drilling. Zametki uchenogo. 2021, no. 10, pp. 290—293. [In Russ].

30. Ovchinnikov N. P., Portnyagina V. V., Dambuev B. I. Establishment of the limiting technical state of a pulp pump without disassembly. Journal of Mining Institute. 2020, vol. 241, pp. 53. [In Russ]. DOI: 10.31897/pmi.2020.1.53.

31. Vasilyeva M. A., Pushkarev A. E. Development of a methodology for assessing the technical level of the designed pumping equipment. MIAB. Mining Inf. Anal. Bull. 2021, no. S7, pp. 26—38. [In Russ]. DOI: 10.25018/0236_1493_2021_4_7_26.

32. Safronchuk K. A., Knyazkina V. I., Ivanov S. L. Estimation of the parameters of the oil pump mechanism with a gear-eccentric motion converter. MIAB. Mining Inf. Anal. Bull. 2020, no. S33, pp. 3—11. [In Russ]. DOI: 10.25018/02361493-2020-10-33-3-11.

33. Shishlyannikov D. I., Dremina D. I., Kartavcev V. K., Korotkov Yu. G. Patent RU 2811050 S1 MPK E21B 17/07 (2006.01), 10.01.2024. [In Russ].

34. Shishlyannikov D. I., Kartavcev V. K., Korotkov Yu. G., Ivanchenko A. A., Yuzhakov N. S. Patent RU 2807658 S1 MPK E21B 43/08 (2006.01), 21.11.2023. [In Russ].

35. Danchenko Yu. V. Patent RU 2559973 C1 IPC E21B 43/08 (2006.01), 20.08.2015. [In Russ].

36. Danchenko Yu. V., Dorogokupets G. L., Ivanov O. E., Kulakov S. V. Patent RU 2289680 C1 IPC E21B 43/08 (2006.01), 20.12.2006. [In Russ].

37. Danchenko Yu. V., Zakrevskaya E. A., Kalan A. L., Poshvin E. V. Patent RU 2456054 C1 IPC E21B 43/08 (2006.01), 20.07.2012. [In Russ].

38. Shishlyannikov D. I., Shavaleeva A. V., Yu. G. Korotkov, Perelman M. O., Poshvin E. V. Patent RU 2709580 C1 IPC E21B 43/08 (2006.01), 18.12.2019. [In Russ].

39. Shishlyannikov D. I., Shavaleeva A. V., Yu. G. Korotkov, Perelman M. O., Poshvin E. V. Patent RU 2715774 C1 IPC E21B 43/08 (2006.01), E03B 3/18 (2006.01), 03.03.2020. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.