Back to search

Rock mass structure assessment on the destress borehole surface in rock pillar in Sheregesh Mine

The geological and geotechnical analyses show that rocks of Sheregesh deposit feature high stress and intense jointing. Enclosing rocks (syenite, scarn, diorite, porphyrite, granite and sandstone) possess high elasticity and brittle fracture ability. In deeper level mining and during blasting at different sites of the mine field, rock mass experiences stress redistribution, geodynamic phenomena and higher rock pressure, which damages blastholes and destress boreholes. The boreholes are inspected visually using a surveillance system of Sheregesh Mine. The fracture behavior in the destress boreholes is defined. The various jointing zones are identified—from a monolith and to extremely jointed rocks. The fracture mechanism in the boreholes situated in broken and extremely jointed zones is determined: it points at the stress relaxation in rock mass by 60–70%. The rock mass jointing zones are identified from axial and transverse joints at different depths and on different measurement sites. In broken and extremely jointed rock mass, contraction of boreholes with the formation of an ellipse-shaped cross-sections was observed.

Keywords: deposit, ore, destress borehole, stress, joint, fault, rock mass, dynamic activity.
For citation:

Eremenko A. A., Koltyshev V. N., Uzun E. E., Khristolyubov E. A. Rock mass structure assessment on the destress borehole surface in rock pillar in Sheregesh Mine. MIAB. Mining Inf. Anal. Bull. 2023;(11):91-101. [In Russ]. DOI: 10.25018/0236_1493_2023_11_0_91.

Issue number: 11
Year: 2023
Page number: 91-101
ISBN: 0236-1493
UDK: 622.83
DOI: 10.25018/0236_1493_2023_11_0_91
Article receipt date: 07.02.2023
Date of review receipt: 26.04.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

A.A. Eremenko1, Dr. Sci. (Eng.), Professor, Chief Researcher, ORCID ID: 0000-0002-7342-7617,
V.N. Koltyshev1, Junior Researcher, e-mail:, ORCID ID: 0009-0005-1810-8137,
E.E. Uzun2, Head of PPGU Section, e-mail:,
E.A. Khristolyubov2, Chief Construction Supervision Specialis,
1 Chinakal Institute of Mining of Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia,
2 Gorno-Shor branch of EVRAZ ZSMK JSC, 652971, Sheregesh, Russia.


For contacts:

E.E. Uzun, e-mail:


1. Eremenko A. A. Sovershenstvovanie tekhnologii burovzryvnykh rabot na zhelezorudnykh mestorozhdeniyakh Zapadnoy Sibiri [Improving the technology of drilling and blasting at iron ore deposits in Western Siberia], Novosibirsk, Nauka, 2013, 192 p.

2. Ufatova Z. G. Unloading rock burst-prone sections of massifs by drilling unloading (camouflage) wells in the conditions of the Oktyabrsky and Taimyrsky mines. MIAB. Mining Inf. Anal. Bull. 2009, no. 9, pp. 258—259. [In Russ].

3. Obryadin A. A. Study of the influence of unloading wells on the stress-strain state of a rock mass. Nauka i molodezh': problemy, poiski, resheniya. Sbornik trudov konferentsii [Science and youth: problems, searches, solutions. Proceedings of the conference], Novokuznetsk, 2017, pp. 87—90.

4. Sleptsov S. N., Eremenko A. A., Leftor V. V., Prib V. V. Development of methods for unloading a rock mass in the course of clearing operations at a shock-prone iron ore deposit. Occupational Safety in Industry. 2021, no. 12, pp. 7—12. [In Russ]. DOI: 10.24000/0409-29612021-12-7-12.

5. Eremenko A. A., Mulev S. N., and Shtirts V. A. Monitoring of geodynamic phenomena by the microseismic method in the development of impact-prone deposits. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2022, no. 1, pp. 12—23. [In Russ]. DOI: 10.15372/FTPRPI20220102.

6. Eremenko A. A., Shaposhnik Yu. N., Filippov V. N., Konurin A. I. Development of scientific foundations for safe and effective geotechnology in the development of shock-prone deposits in Western Siberia and the Far North. Gornyi Zhurnal. 2019, no. 10, pp. 33—39. [In Russ]. DOI: 10.15372/FPVGN2021080130.

7. Sergunin M. P., Darbinyan T. P., Mushtekenov T. S., and Balandin V. V. Evaluation of the effectiveness of downhole relief drilling using the example of the Oktyabrskoye deposit by numerical methods. Gornyi Zhurnal. 2021, no. 2, pp. 26—31. DOI: 10.17580/gzh.2021.02.03.

8. Skitovich V. P. Experience in the use of unloading wells at the mine «Yubileinaya». Occupational Safety in Industry. 2009, no. 5, pp. 19—20. [In Russ].

9. Imgrund T., Bauer F. Drilling of relief and degassing wells for high-performance stopes in coal seams with low permeability. Ugol'. 2013, no. 8, pp. 71—81. [In Russ].

10. Ivanov V. I., Belov N. I. Prevention of rock burst hazard with the help of relief wells. Prognoz i predotvrashchenie gornykh udarov na rudnykh mestorozhdeniyakh [Forecast and prevention of rock bursts at ore deposits], Apatity, 1993, pp. 83—87.

11. Gorpinchenko V. A., Saznov V. V., Andreev A. A., Vilchinsky V. B. Method for determining the effective parameters of relief wells for the safe development of rockburst-prone deposits in the Norilsk industrial region. Gornyi Zhurnal. 2015, no. 6, pp. 68—73. [In Russ].

12. Kostenko V. K., Zinchenko N. N., Brigida V. S., Salehiradzh S. Substantiation of the parameters of the method of blasthole discharge of the mouths of degassing wells. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2015, no. 15, pp. 85—91. [In Russ].

13. Sabyanin G. V., Shilenko S. Yu., Trofimov A. V., Kirkin A. P. Explosive unloading of a rock mass at deep mines of the Polar Division of PJSC MMC Norilsk Nickel. Gornyi Zhurnal. 2021, no. 2, pp. 32—36. [In Russ]. DOI: 10.17580/gzh.2021.02.04.

14. Karpov G. N., Kovalski E. R., Smychnik A. D. Determination of rock destressing parameters at the ends of disassembling room. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 95—107. [In Russ]. DOI: 10.25018/0236-1493-2019-08-0-95-107.

15. Tyupin V. N., Ponomarenko K. B. Assessment of the reliability of the explosive method for determining the stress state of a rock mass. Explosion technology. 2022, no. 137-94, pp. 138—152. [In Russ].

16. Saharan M. R., Mitri H. S. Destress blasting as a mines safety tool: Some fundamental challenges for successful applications. Procedia Engineering. 2011, vol. 26, no. 2, pp. 37—47. DOI: 10.1016/j.proeng.2011.11.2137

17. Andrieux P. P., Brummer R. K., Qian Liu, Simser B. P. Mortazavi A. Large-scale panel destress blast at Brunswick mine. CIM Bulletin. 2003, vol. 96, no. 1075, pp. 78—87.

18. Vennes I., Mitri H. Geomechanical effects of stress shadow created by large-scale destress blasting. Journal of Rock Mechanics and Geotechnical Engineering. 2017, vol. 9, no. 6, pp. 1085—1093. DOI:10.1016/j.jrmge.2017.09.004.

19. Mitri H. S. Destress Blasting — From Theory to Practice. Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering. Madrid, 2018. DOI: 10.11159/ mmme18.2.

20. Watson D. An implementation of natural neighbor interpolation, Claremont, Australia, 1994, 170 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.