Back to search

Oxidation of man-made mineral formations with acid waste water at sulphide-containing waste dumps: A case-study of Karabash agglomeration

Man-made mineral formations in the area of Karabash agglomeration are the source of environmental pollution. They undergo the effects of rainfall all year round, and are in contact with acid waste water. The test samples of man-made mineral formations were analyzed using X-ray diffraction and electron scan microscopy. Morphologically, slags are generally black and glassy, and have different sizes—from a few millimeters to dozens centimeters. Mineralogically, slags feature 8 basic types of minerals: quartz, fayalite, spinel-like phases, wurtzite, willemite, chalcopyrite, chalcosine and greenockite. The testing shows that when a sulphide-containing slagheap gets in contact with acid underspoil water, the crystal structure of slag fails completely and heavy metals get leached into the environment. The oxidized slag layer contains such minerals as muscovite, quartz, clinochlore, gypsum, pyrite and lizardite, including dominant heavy metals of Fe, S, Cu, Zn, As and Pb. The tests prove that slag is not inert relative to the environment. Reactions of oxidation of crystalline slag run inside the slagheap, and heavy metals are liberated from the crystal lattice and can migrate to the adjacent terrain. The research findings can promote revising the methods and means of storage of man-made mineral formations. The test data on the content of heavy metals and on the mineral composition of waste suggest usability of slag as a recycling feedstock.

Keywords: slag, heavy metals, man-made mineral formations, accumulated damage objects, mobile species, sulphide-containing waste dumps, slagheaps, technogenesis.
For citation:

Shabanov M. V., Marichev M. S., Minkina T. M., Sokolov А. A. Oxidation of manmade mineral formations with acid waste water at sulphide-containing waste dumps: A casestudy of Karabash agglomeration. MIAB. Mining Inf. Anal. Bull. 2024;(4):69-85. [In Russ]. DOI: 10.25018/0236_1493_2024_4_0_69.

Acknowledgements:

The study was carried out at the Southern Federal University and was supported by the Russian Science Foundation, Grant No. 21-77-20089.

Issue number: 4
Year: 2024
Page number: 69-85
ISBN: 0236-1493
UDK: 502.3/.7:504: 622.17: 631.41
DOI: 10.25018/0236_1493_2024_4_0_69
Article receipt date: 11.01.2024
Date of review receipt: 14.02.2024
Date of the editorial board′s decision on the article′s publishing: 10.03.2024
About authors:

M.V. Shabanov1, Cand. Sci. (Agr.), Assistant Assistant Professor, e-mail: geohim.spb@gmail.com, Scopus Author ID: 35171489500, ORCID ID: 0000-0003-4725-3673,
M.S. Marichev1, Cand. Sci. (Biol.), Head of Laboratory, e-mail: m.s.marichev@yandex.ru, Scopus Author ID: 57216298057, ORCID ID: 0000-0003-0429-2234,
T.M. Minkina, Dr. Sci. (Biol.), Professor, Head of Chair, Southern Federal University, 344006, Rostov-on-Don, Russia, e-mail: minkina@sfedu.ru, Scopus Author ID: 15063165400, ORCID ID: 0000-0003-3022-0883,
А.A. Sokolov, Cand. Sci. (Eng.), Assistant Professor, Branch of Southern Federal University in Gelendzhik, Gelendzhik, Russia, e-mail: anso@sfedu.ru, ORCID ID: 0000-0002-1127-9612,
1 Saint-Petersburg State Agrarian University, 196605, Pushkin, Russia.

 

For contacts:

M.S. Marichev, e-mail: m.s.marichev@yandex.ru.

Bibliography:

1. Shabanov M. V., Marichev M. S., Mangiyeva S. S., Sokolov A. A. Chemozem formation under conditions of prolong exposure to aero-industrial emissions from a mining and smelting plant. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 3, pp. 727—740. [In Russ]. DOI: 10.21177/1998-4502-2023-15-3-727-740.

2. Shabanov M. V., Marichev M. S., Minkina T. M., Abdimutalip N. A. The role of the mining and processing enterprise in the formation of techno-geochemical anomalies of arsenic in the soils of the Soymonovskaya Valley (Southern Urals). Sustainable Development of Mountain Territories. 2022, vol. 14, no. 4, pp. 632—643. [In Russ]. DOI: 10.21177/1998-4502-2022-14-4-632-643.

3. Saikia N., Borah N. N., Konwar K., Vandecastelee C. pH dependent leachings of some trace metals and metalloid species from lead smelter slag and their fate in natural geochemical environment. Groundwater for Sustainable Development. 2018, vol. 7, pp. 348—358. DOI: 10.1016/j.gsd.2018.01.009.

4. Krupskaya L., Kulikova E., Filatova M., Leonenko A. A Mathematical Model for Assessing the Impact of a Man-Made System on an Air Basin. Ecology and Industry of Russia. 2023, no. 27(8), pp. 50—57. [In Russ]. DOI: 10.18412/1816-0395-2023-8-50-57.

5. Razorenov Yu. I., Klyuev R. V., Guzueva E. R. Technogenic impact on the environment during leaching. IOP Conference Series: Earth and Environmental Science. 2022, vol. 1021, no. 1, article 012050. DOI: 10.1088/1755-1315/1021/1/012050.

6. Fomenko V. A., Sokolov A. A., Miroshnikov A. S., Ranjan Anuj, Lukyanov A. S. Advancement of geoecological monitoring of radon emanations from out-of-service tailings dumps in mineral mining and processing industry. MIAB. Mining Inf. Anal. Bull. 2023, no. 6, pp. 139—152. [In Russ]. DOI: 10.25018/0236_1493_2023_6_0_139.

7. Kulikova А. А. A new approach to estimating emissions from mining enterprises, taking into account the carbon footprint. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 4, pp. 825—832. [In Russ]. DOI: 10.21177/1998-4502-2023-15-4-825-832.

8. Jin T., Liu Y., Yang Jackson D. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition. Ecotoxicology and Environmental Safety. 2014, vol. 104, pp. 43—50. DOI: 10.1016/j.ecoenv.2014.02.003.

9. Shibayama A., Takasaki Y., William T., Yamatodani A., Higuchi Y., Sunagawa S., Ono E. Treatment of smelting residue for arsenic removal and recovery of copper using pyrohydrometallurgical process. Journal of Hazardous Materials. 2010, vol. 181, pp. 1016—1023. DOI: 10.1016/j.jhazmat. 2010.05.116.

10. Gorai B., Jana R. Characteristics and utilisation of copper slag a review. Resources. Conservation and Recycling. 2003, vol. 39, pp. 299—313. DOI: 10.1016/S0921-3449(02)00171-4.

11. Shabanov M. V., Marichev M. S. Geochemical anomalies of heavy metals in soils of natural and anthropogenic landscapes (by the example of Krasnouralsky industrial area). Proceedings of Tomsk Polytechnic University. Engineering of georesources. 2022, vol. 333, no. 6, pp. 230—239. [In Russ]. DOI: 10.18799/24131830/2022/6/3545 21.25.

12. Makarov A. B., Guman O. M., Antonova I. A., Zakharov A. V. Transformation of geological environment in copper pyrite mining in the Urals. MIAB. Mining Inf. Anal. Bull. 2018, no. 6, pp. 98— 105. [In Russ]. DOI: 10.25018/0236-1493-2018-6-0-98-106.

13. Kierczak J., Potysz A., Pietranik A., Tyszka R., Modelska M., Néel C., Ettler V., Mihaljevič M. Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (southwestern Poland). Journal of Geochemical Exploration. 2013, vol. 124, pp. 183—194. DOI: 10.1016/j. gexplo.2012.09.008

14. Udachin V. A. Ekogeokhimiya gornopromyshlennogo tekhnogeneza Yuzhnogo Urala [Ecogeochemistry of the mining technogenesis of the Southern Urals], Doctor’s thesis, Tomsk, TPU, 2012, 249 p.

15. Udachin V. I., Kitagawa R., Williamson B., Sugahara T. Ores and metallurgical slags of Karabash (Southern Urals) and Ashio (Japan) deposits: composition and potential impact on the environment. Metallogeniya drevnikh i sovremennykh okeanov-2002. Formirovanie i osvoenie mestorozhdeniy v ofiolitovykh zonakh: Materialy Vos'moy nauchnoy studencheskoy shkoly [Metallogeny of ancient and modern oceans-2002. Formation and development of deposits in ophiolite zones: materials of the Eighth Scientific Student School], Miass, 2002, pp. 267—275. [In Russ].

16. Rouquette J., Kantor I., Mccammon C. A., Dmitriev V., Dubrovinsky L. S. High-pressure studies of (Mg0.9Fe0.1)2SiO4 olivine using raman spectroscopy, X-ray diffraction, and mössbauer spectroscopy. Inorganic Chemistry. 2008, vol. 47, no. 7, pp. 2668—2673. DOI: 10.1021/ic701983w.

17. Fang Z., Wang E., Chen Y., Hou X., Chou K. C., Yang W., Chen J., Shang M. Wurtzite AlN(0001) surface oxidation: Hints from Ab initio calculations. ACS Applied Materials & Interfaces. 2018, vol. 10, no. 36, pp. 30811—30818. DOI: 10.1021/acsami.8b08242.

18. Masloboev V. A., Seleznev S. G., Makarov D. V., Svetlov A. V. Environmental hazard assessment of waste storage of copper-nickel ore mining and processing. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2014, no. 3, pp. 138—153. [In Russ].

19. Belogub E. V., Ayupova N. R., Krivovichev V. G., Novoselov K. A., Blinov I. A., Charykova M. V. Se minerals in the continental and submarine oxidation zones of the South Urals volcanogenic-hosted massive sulfide deposits. A review. Ore Geology Reviews. 2020, vol. 122, article 103500. DOI: 10.1016/j.oregeorev.2020.103500.

20. Semenkov I. N., Sharapova A. V., Lednev S. A., Koroleva T. V. The fractional composition of compounds of metals and sulfur in the upper layer of soils of the impact zones of a coal mine (Central Russian forest-steppe). Arid Ecosystems. 2023, no. 13, pp. 224—231. DOI: 10.1134/s2079096 123020130.

21. Cao J., Lu J., Jiang L., Wang Zhi Oxidation behavior of metallurgical silicon slag under nonisothermal and isothermal conditions. Journal of Thermal Analysis and Calorimetry. 2016, vol. 124, pp. 593—599. DOI: 10.1007/s10973-015-5157-0.

22. Freyssinet P. H., Piantone P., Azaroual M., Itard Y., Clozel-Leloup B., Guyonnet D. Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Management. 2002, vol. 22, pp. 159—172. DOI: 10.1016 /s0956-053x(01)00065-4.

23. Desborough G. A., Smith K. S., Lowers H. A., Swayze G. A., Hammarstrom J. M., Diehl S. F., Leinz R. W., Driscoll R. L. Mineralogical and chemical characteristics of some natural jarosites. Geochimica et Cosmochimica Acta. 2010, vol. 74, no. 3, pp. 1041—1056. DOI: 10.1016/j.gca.2009.11.006.

24. Bigham J. M., Schwetmann U., Traina S. J., Winland R. L., Wolf M. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta. 1996, vol. 60, pp. 2111—2121. DOI: 10.1016/0016-7037(96)00091-9.

25. Morrison A. L., Gulson B. L. Preliminary findings of chemistry and bioaccessibility in base metal smelter slags. Science of the Total Environment. 2007, vol. 382, no. 1, pp. 30—42. DOI: 10. 1016/j.scitotenv.2007.03.034.

26. Zinovieva O. M., Kolesnikova L. A., Merkulova A. M., Smirnova N. A. On the issue of assessing the ecological condition of the environment to achieve sustainable development of coal-mining regions of Russia. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 35—43. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-35-43.

27. Fomenko V. A., Sokolov A. A., Lolaev A. B., Aimbetova I. O. Some results of the work on the evaluation of radon emanations at Unal tailings. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 4, pp. 576—585. [In Russ]. DOI: 10.21177/1998-4502-2022-14-4-576-585.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.