Back to search

The definition of the radial dimensions of the oncoming counterblow grinder

The article discusses the design of the main parameters of the oncoming counterblow grinder. The grinders have a fairly simple device and compact design, have a direct drive of external and internal disks from standard electric motors. They are used both in industry when grinding small volumes of gravel and sand materials, and for sample preparation in testing laboratories. Studies of the processes of grinding materials by counter impact in general, and in particular, by a rotary counter impact grinder have not been studied in sufficient detail. The paper solves the actual problem of developing a missing methodology for calculating the basic geometric parameters of the grinder in question during its design. The authors, based on the generalization of their own design experience, proposed a methodological approach to determining the geometric parameters of the rotor of the oncoming impact grinder. It is shown that two ways of designing are possible: without minimizing the head and with ensuring the minimum head of the rotor-fan. The results of the calculations performed according to the given empirical dependencies made it possible to formulate appropriate recommendations on the radius, rotor gaps, and sizes of active elements. Operational and technological criteria for the destruction of various fractions of the material are taken into account. A verification calculation of the active elements for strength is provided. The material of the article will be useful for enterprises and organizations involved in the design, production and manufacture of shredders, students and postgraduates of universities.

Keywords: the rotor design, algorithm, gap of rotor, radius of rotor, speed of impact, the counterblow grinder.
For citation:

Zubov V. V., Simisinov D. I., Frolov S. G. The definition of the radial dimensions of the oncoming counterblow grinder. MIAB. Mining Inf. Anal. Bull. 2024;(1-1):193—205. [In Russ]. DOI: 10.25018/0236_1493_2024_011_0_193.

Issue number: 1
Year: 2024
Page number: 193-205
ISBN: 0236-1493
UDK: 622.771
DOI: 10.25018/0236_1493_2024_011_0_193
Article receipt date: 15.05.2023
Date of review receipt: 25.11.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

Simisinov D. I., Dr. Sci. (Eng.), Docent, Head of the Mining Equipment Operation Department, Ural State Mining University;
Zubov V. V., Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department Mining Equipment Operation Department, Ural State Mining University v.zubov.r66@;
Frolov S. G., Cand. Sci. (Eng.), Docent, Head of the Department of Technology and Technical Mineral Exploration, Ural State Mining University


For contacts:

Simisinov D. I.,


1. Holmberga K., Kivikytö-Reponena P., Härkisaarib P., Valtonenb K., Erdemir A. Global energy consumption due to friction and wear in the mining industry. Tribology International. 2017, vol. 115, pp. 116−139. DOI: 10.1016/j.triboint.2017.05.010.

2. Taylor L., Skuse D., Blackburn S., Greenwood R. Stirred media mills in the mining industry: Material grindability, energy-size relationships, and operating conditions. Powder technology. 2020, vol. 369, pp. 1−16. DOI: 10.1016/j.powtec.2020.04.057.

3. Dogra M., Sharma V. S., Dureja J. S., Gill S. S. Environment-friendly technological advancements to enhance the sustainability in surface grinding. A review. Journal of cleaner Production. 2018, vol. 197, pp. 218−231. DOI: 10.1016/j.jclepro.2018.05.280

4. Korchevsky A. N., Nazimko E. I., Serafimova L. I., Naumenko V. G. Preparatory processes in the enrichment of minerals. Crushing, grinding, screening and classification. Donetsk: DonNTU, 2017. 180 p. [In Russ].

5. Golik V. I. Investigation of the influence of the properties of solids on the energy of grinding in mills. MIAB. Mining Inf. Anal. Bull. 2021, no. 10, pp. 112–122. [In Russ]. DOI: 10.25018/0236_1493_2021_10_0_112.

6. Patel D. K., Goyal D., Pabla B. S. Optimization of parameters in cylindrical and surface grinding for improved surface finish. Royal Society open science. 2018, vol. 5, no. 5. DOI: 10.1098/rsos.171906.

7. Sharapov R. R. Determination of the boundary conditions of the grinding load in ball mills. IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2018, vol. 307, no. 1, p. 012047. DOI: 10.1088/1757−899X/307/1/012047.

8. Bardovsky A. D., Valeeva L. M., Basyrov I. I. A plant with a rotary jet grinder to produce small fractions of mineral raw material. IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2020, vol. 971, no. 5, p. 052004. DOI: 10.1088/1757−899X/971/5/052004

9. Gorlov I. V., Mitusov P. E., Belyaev A. M. Analysis of the grinding process of weak rocks. Ugol. 2022, no. 6 (1155), pp. 44−47. [In Russ]. DOI: http://dx.doi. org/10.18796/0041−5790−2022−6-44−47.

10. Matveev A. I., Vinokurov V. R. Design development of a new combined-action rock shredder. Prirodnye resursy Arktiki i Subarktiki. 2020, vol. 25, no. 3, pp. 63−73. [In Russ]. DOI: 10.31242/2618−9712−2020−25−3-6.

11. Vaisberg L. A., Korovnikov A. N., Trofimov V. A. Modernization of technological screening cycles based on innovative equipment (to the 100th anniversary of the Institute “Mechanobr”). Gorny`j zhurnal. 2017, no 1, pp. 11−17. DOI: 10.17580/gzh.2017.01.02 [In Russ.]

12. Vaisberg L. A., Safronov A. N. O application of vibrational disintegration for processing of various materials. Obogashhenie rud. 2018, no. 1, pp. 3−11. [In Russ]. DOI: 10.17580/or.2018.01.01.

13. Bilenko L. F., Dyachkova T. F. Ways to improve the technology of crushing and crushing ores on the example of the Theological aluminum plant. Obogashhenie rud. 2007, no. 4, pp. 3−7. [In Russ].

14. Hopunov E. A. Analysis of the causes of low energy efficiency of the processes of destruction of mineral raw materials. Sovremennaya texnika i texnologii. 2014, no. 10, pp. 42−51. [In Russ].

15. Afanasyev A. I., Pankov S. A., Potapov V. Ya., Fefelov M. I. Experimental studies of impact destruction of poor sulfide ores. Sovremenny`e problemy` nauki i obrazovaniya. 2013, no. 6, pp. 159−159. [In Russ].

16. Palaniandy S., Halomoan R., Ishikawa H. TowerMill circuit performance in the magnetite grinding circuit–The multi-component approach. Minerals Engineering. 2019, vol. 133, pp. 10−18. DOI: 10.1016/j.mineng.2018.12.019.

17. Botha S., Le Roux J. D., Craig I. K. Hybrid non-linear model predictive control of a run-of-mine ore grinding mill circuit. Minerals Engineering. 2018, vol. 123, pp. 49−62. DOI: 10.1016/j.mineng.2018.04.016.

18. Zubov V. V., Simisinov D. I., Akhlyustina N. V., Khazin M. L., Davydov S. Ya. Determination of the parameters of a counterblow grinder. Refractories and Industrial Ceramics. 2018, vol. 58, no. 5, pp. 521–524.−018−0136−1.

19. Lyaptsev S. A., Akhlyustina N. V. Modeling of particle motion in a shredder. Izvestiya vuzov. Gornyj zhurnal. 2007, no. 8, pp. 107−110. [In Russ].

20. Akhlyustina N. V., Zubov V. V. Air flow control in the channels of the rotor of the oncoming impact chopper. Izvestiya vuzov. Gornyj zhurnal. 2015, no. 3, pp. 126−132. [In Russ].

21. Khalkechev R. K. Multifractal model of crack propagation in polycrystals under shock loads. MIAB. Mining Inf. Anal. Bull. 2012, no. 3−2, pp. 17−23. [In Russ].

22. Matveev A. I., Vinokurov V. R. Experimental studies on the intensification of grinding processes in a stepped centrifugal mill. Prirodnye resursy Arktiki i Subarktiki. 2019, vol. 24, no. 2, pp. 56−63. [In Russ]. DOI: 10.31242/2618−9712−2019−24−2-5.

23. Savinykh P. A., Isupov A. Yu., Ivanov I. I. Determination of the main kinematic parameters of particle motion in the channel of the distribution bowl of a centrifugal rotary shredder. Vestnik NGIEI. 2020, no. 7 (110), pp. 37−46. [In Russ]. DOI: 10.24411/2227−9407−2020−10062.

24. Batyrov V. I., Apkhudov T. M. Substantiation of the main design and technological parameters of a two-roll rotary shredder. Izvestiya Kabardino-Balkarskogo gosudarstvennogo agrarnogo universiteta im. V. M. Kokova. 2022, no. 4 (38), pp. 87−97. [In Russ]. DOI: 10.55196/2411−3492−2022−4-38−87−97.

25. Zhabin A. B., Lavit I. M., Polyakov A. V., Kerimov Z. E. Mathematical model of rock destruction by percussion instrument. MIAB. Mining Inf. Anal. Bull. 2020, no. 11, pp. 140–150. [In Russ]. DOI: 10.25018/0236−14932020−11−0-140−150.

26. Bragin V. G., Volkov E. B., Kazakov Yu. M. Theoretical mechanics. Yekaterinburg, UGGU, 2018, 249 p. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.