Back to search

Experience of trial percolation in heap leaching pile of sandy–clayey rocks

Permeability is one of the key parameters in the heap leaching pile design. Control and adjustment of this parameter contribute to expert maintenance of operational characteristics of the process. This article describes the practice of the field-scale trial percolation in the conditions of a heap leaching pile of sandy–clayey rocks based on the interval percolation method proposed by V. M. Nasber and adapted to the pile conditions. The method allows assessing the change in permeability in depth and in plan of a heap leaching site. The studies show that the piling technology has an influence on formation of zones with either decreased permeability (less than 0.1 m/day) or increased permeability (higher than 100 m/day). The research proves the requirement to carry out piling with regard to natural segregation of materials being piled. The distribution of the coarse size particles in horizontal layers of a pile increases the rate of percolation insignificantly. The vertical zoning of the coarse-size particles accelerates the rate of percolation, governs the flow direction of leach solution and reduces the contact time of the leach solution with ore agglomerates, which results in the incomplete leaching of a useful component. The controllable segregation and agglomeration promotes efficient recovery of metals. The adopted piling flow charts must ensure uniform percolation at the preset sprinkler density and without formation of zones of higher or lower permeability.

Keywords: heap leaching, trial percolation, permeability, permeation, seepage, sandy–clayey ore, agglomerated ore, heap leaching pile.
For citation:

Marinin M. A., Pospehov G. B., Sushkova V. I., Pomortseva A. A., Moseykin V. V. Experience of trial percolation in heap leaching pile of sandy–clayey rocks. MIAB. Mining Inf. Anal. Bull. 2024;(8):51-62. [In Russ]. DOI: 10.25018/0236_1493_2024_8_0_51.

Acknowledgements:
Issue number: 8
Year: 2024
Page number: 51-62
ISBN: 0236-1493
UDK: 622.234.42:556.3
DOI: 10.25018/0236_1493_2024_8_0_51
Article receipt date: 03.04.2024
Date of review receipt: 13.05.2024
Date of the editorial board′s decision on the article′s publishing: 10.07.2024
About authors:

M.A. Marinin1, Cand. Sci. (Eng.), Assistant Professor, e-mail: marinin_ma@pers.spmi.ru, ORCID ID: 0000-0002-5575-9343,
G.B. Pospehov1, Cand. Sci. (Geol. Mineral.), Assistant Professor, e-mail: pospehov@spmi.ru, ORCID ID: 0000-0001-9090-5150,
V.I. Sushkova1, Graduate Student, e-mail: s235054@stud.spmi.ru, ORCID ID: 0000-0003-4247-6499,
A.A. Pomortseva, Leading Specialist, Limited Liability Company «Gazprom invest», 196210, Saint-Petersburg, Russia, e-mail: a.a.pomortseva@mail.ru, ORCID ID: 0000-0002-7911-7011,
V.V. Moseykin, Dr. Sci. (Eng.), Professor, NUST MISIS, 119049, Moscow, Russia, e-mail: moseykin@inbox.ru, ORCID ID: 0000-0002-2286-1480,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

M.A. Marinin, e-mail: marinin_ma@pers.spmi.ru.

Bibliography:

1. Ivankov S. I., Troitsky A. V., Skobelev K. D. Modern trends in the creation of technology for processing and disposal of enrichment waste in the mining and processing industry. Scientific and Technical Aspects of Environmental Protection. 2021, no. 2, pp. 2—39. [In Russ]. DOI: 10.36535/08691002-2021-02-1.

2. Marinina O. A., Kirsanova N. Y., Nevskaya M. A. Circular economy models in industry: developing a conceptual framework. Energies. 2022, vol. 24, no. 15, pp. 9376—9386. DOI: 10.3390/ en15249376.

3. Rybak Yа., Khayrutdinov M. M., Kongar-Syuryun Ch. B., Tyulyayeva Yu. S. Resource-saving technologies for development of mineral deposits. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 3(49), pp. 406—415. [In Russ]. DOI: 10.21177/1998-4502-2021-13-3-406-415.

4. Chanturiya V. A., Shadrunova I. V., Gorlova O. E., Kolodezhnaya E. V. Development of technological innovations of deep and complex processing of technogenic raw materials in the context of new economic challenges. News of the Tula state university. Sciences of Earth. 2020, no. 1, pp. 159—171. [In Russ]. DOI: 10.46689/2218-5194-2020-1-1-159-171.

5. Alexandrova T., Nikolaeva N., Afanasova A., Romashev A., Aburova V., Prokhorova E. Extraction of low-dimensional structures of noble and rare metals from carbonaceous ores using lowtemperature and energy impacts at succeeding stages of raw material transformation. Minerals. 2023, vol. 13, no. 1, pp. 84—112. DOI: 10.3390/min13010084.

6. Litvinova T., Kashurin R., Zhadovskiy I., Gerasev S. The kinetic aspects of the dissolution of slightly soluble lanthanoid carbonates. Metals. 2021, vol. 11, no. 11, article 1793. DOI: 10.3390/ met11111793.

7. Pashkevich M. A., Alekseenko A. V., Nureev R. R. Environmental damage from the storage of sulfide ore tailings. Journal of Mining Institute. 2023, vol. 260, pp. 155—167. [In Russ]. DOI: 10.31897/ PMI.2023.32.

8. Rudzish R. E., Petrova V. A. Application prospects for nonconventional improvers for vegetation cover in reclamation areas. Gornyi Zhurnal. 2023, no. 9, pp. 75—82. [In Russ]. DOI: 10.17580/ gzh.2023.09.11.

9. Yakubovsky M. A., Pavlichenko M. V., Loginov E. V. Experience in technical recultivation of lands disturbed during the development of sand-gravel deposit. Mineral mining & conservation. 2022, no. 3(65), pp. 66—74. [In Russ]. DOI: 10.26121/RON.2022.38.25.007.

10. Thenepalli T., Chilakala R., Habte L., Tuan L., Kim C. S. A brief note on the heap leaching technologies for the recovery of valuable metals. Sustainability. 2019, vol. 11, no. 12. article 3347. DOI: 10.390/SU1112334730.

11. Jia L., Huang J., Ma Z., Liu X., Chen X., LI J., He L., Zhao Z. Research and development trends of hydrometallurgy: An overview based on Hydrometallurgy literature from 1975 to 2019. Transactions of Nonferrous Metals Society of China. 2020, vol. 30, no. 11, pp. 3147—3160. DOI: 10.1016/ S1003-6326(20)65450-4.

12. Kozyrev B. A., Sizyakov V. M. Heap leaching of red mud by the formate method. Obogashchenie Rud. 2021, no. 4, pp. 40—45. [In Russ]. DOI: 10.17580/or.2021.04.07.

13. Valiev N. G., Propp V. D., Abramkin N. I., Kambolov D. A. The practice of leaching metals from substandard raw materials and ore dressing waste. MIAB. Mining Inf. Anal. Bull. 2023, no. 12-1, pp. 17—30. [In Russ]. DOI: 10.25018/0236_1493_2023_121_0_17.

14. Ghorbani Y., Franzidis J.-P., Petersen J. Heap Leaching technology—current state, innovations, and future directions: A review. Mineral Processing and Extractive Metallurgy Review. 2016, vol. 377, pp. 73—119. DOI: 10.1080/08827508.2015.1115990.

15. Dement'ev V. E., Druzhinina G. E., Gudkov S. S. Kuchnoe vyshchelachivanie zolota i serebra [Heap leaching of gold and silver], Irkutsk, Irgiredmet, 2004, 352 p.

16. Toro N., Ghorbani Y., Turan M. D., Robles P., Gálvez E. Gangues and clays minerals as ratelimiting factors in copper heap leaching: A review. Metals. 2021, vol. 11, no. 10, pp. 1539—1554. DOI: 10.3390/met11101539.

17. Leiming W., Shenghua Y., Aixiang W. Ore agglomeration behavior and its key controlling factors in heap leaching of low-grade copper minerals. Journal of Cleaner Production. 2021, vol. 279, article 123705. DOI: 10.1016/j.jclepro.2020.123705.

18. Petrakov D. G., Penkov G. M., Zolotukhin A. B. Experimental study on the effect of rock pressure on sandstone permeability. Journal of Mining Institute. 2022, vol. 254, pp. 244—251. [In Russ]. DOI: 10.31897/PMI.2022.24.

19. Golik V. I., Razorenov Yu. I., Komashchenko V. I., Burdzieva O. G. Experimental study of the quality of ore crushing for underground leaching. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021, vol. 332, no. 6, pp. 160—166. [In Russ]. DOI: 10.18799/24131830/2021/0 6/3246.

20. Tataurov S. B. Obosnovanie geotekhnologicheskikh protsessov kuchnogo vyshchelachivaniya zolota s kriogennymi preobrazovaniyami mineral'nogo syr'ya [Justification of geotechnological processes of heap leaching of gold with cryogenic transformations of mineral raw materials], Doctor’s thesis, Saint-Petersburg, SPbGU, 2011, 41 p.

21. Tcharo H., Tcharo Ya. A., Mirsamiev N. A. New approaches to improving heap leach stockpiles filtration properties. The Eurasian Scientific Journal. 2023, vol. 15, no. 6. [In Russ]. https://esj.today/ PDF/32NZVN623.pdf.

22. Wang L., Zhang X., Yin S., Zhang X., Liu P., Ilankoon I. M. S. K. Three-dimensional characterisation of pore networks and fluid flow in segregated heaps in the presence of crushed ore and agglomerates. Hydrometallurgy. 2023, vol. 219, article 106082. DOI: 10.1016/J.Hydromet.2023.106082.

23. Apelt T., Forrester K., Short M., Stefan L. Determination ofoptimum heap height from column leach tests: 1. Model development and initial results. Mineral Processing and Extractive Metallurgy. 2017, vol. 126, no. 3, pp. 146—156. DOI: 10.1080/03719553.2016.1196520.

24. McBride D., Gebhardt J., Croft N., Cross M. Heap leaching: modeling and forecasting using CFD technology. Minerals. 2018, vol. 8, no. 1, article 9. DOI: 10.3390/MIN8010009.

25. van Staden P. J., Petersen J. The effects of simulated stacking phenomena on the percolation leaching of crushed ore, Part 1: Segregation. Minerals Engineering. 2018, vol. 128, pp. 202—214. DOI: 10.1016/J.Mineng.2018.08.045.

26. Rusanov I. F., Rusanov N. I. Influence of slope formations conditions on the segregation of materials by size over inclined surface. Sbornik Don GTU. 2019, no. 13(56), pp. 27—33. [In Russ].

27. Pchelkin G. D., Kustov V. V., Kustov A. V. Experimental studies of the influence of loose rock properties on the slope characteristic of the bulk technogenic formation. Gorny Vestnik. 2012, no. 95, pp. 219—223. [In Russ].

28. Lushnikov Ya. V., Bagazeev V. K. Definition of physical and mechanical properties of ore pellets when forming a stack of heap leaching. Minerals and Mining Engineering. 2013, no. 8, pp. 124—127. [In Russ].

29. Vorob'ev A. E., Tcharo Kh. The main factors determining the efficiency of irrigation of the HL stack. The Eurasian Scientific Journal. 2019, vol. 11, no. 1, pp. 59. [In Russ].

30. Kutepov Yu. Yu., Karasev M. A. Analysis and prediction of phosphogypsum compaction in dumps for dump capacity substantiation. Gornyi Zhurnal. 2023, no. 5, pp. 61—67. [In Russ]. DOI: 10.17580/gzh.2023.05.09.

31. Verigin N. N. Metody opredeleniya fil'tratsionnykh svoystv gornykh porod [Methods for determining the filtration properties of rocks], Moscow, Gosstroyizdat, 1962, 180 p.

32. Saldaña M., Gálvez E., Robles P., Castillo J., Toro N. Copper mineral leaching mathematical models — A review. Materials. 2022, vol. 15, no. 5, article 1757. DOI: 10.3390/ma15051757.

33. Morozov K. V., Demekhin D. N., Kotlov S. N., Abashin V. I. In-situ permeability testing of deep-level potash salt rocks with a view to creating water retaining walls. Gornyi Zhurnal. 2023, no. 5, pp. 25—31. [In Russ]. DOI: 10.17580/gzh.2023.05.04.

34. Iovlev G. A., Protosenya A. G., Petrov N. E. Determination of parameters of soil constitutive models based on field test data. Soil Mechanics and Foundation Engineering. 2024, vol. 60, pp. 528—534. DOI: 10.1007/s11204-024-09925-3.

35. Marinin M. A., Karasev M. A., Pospehov G. B., Pomortseva A. A., Kondakova V. N., Sushkova V. I. Comprehensive study of filtration properties of pelletized sandy clay ores and filtration modes in the heap leaching stac. Journal of Mining Institute. 2023, vol. 259, pp. 30—40. [In Russ]. DOI: 10.31897/PMI.2023.7.

36. Spravochnoe rukovodstvo gidrogeologa, t. 2 [Hydrogeologist's reference guide, vol. 2], Moscow-Leningrad, Nedra, 1967, 360 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.