Back to search

Features of copper–molybdenum ore grinding

For the purpose of sustainability of mineral resources and mineral supplies, it becomes necessary to involve low-quality, uneconomic and nonconventional mineral raw materials in production. That being the case, it is required to improve efficiency and completeness of recovery of valuable components and to reduce economic costs and energy consumption at the successive stages of pretreatment and processing. Disintegration processes take the most energy at a mill, and have influence on efficiency of subsequent beneficiation. The test subject of the study is copper–molybdenum ore from Kadzharan deposit. With a view to optimizing pretreatment of different-composition copper–molybdenum ore, kinetics of grinding process was investigated, and angles of friction were determined subject to grinding time. The grinding kinetics of copper–molybdenum ore was analyzed using Tovarov’s equation. For the quantification of ore pretreatment selectivity, the size grading analysis was performed using the data on the element and granulometric analyses. The source data of the assessment was the total distribution of components per particle sizes. The selectivity index was substantiated and proposed for evaluation of grinding efficiency.

Keywords: disintegration, grinding kinetics, copper–molybdenum ore, selectivity index, friction angle, nonferrous metals, selective disintegration, optimization.
For citation:

Nikolaeva N. V., Kallaev I. T. Features of copper–molybdenum ore grinding. MIAB. Mining Inf. Anal. Bull. 2024;(1):52-66. [In Russ]. DOI: 10.25018/0236_1493_2024_1_0_52.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 19-17-00096.

Issue number: 1
Year: 2024
Page number: 52-66
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2024_1_0_52
Article receipt date: 29.05.2023
Date of review receipt: 15.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

N.V. Nikolaeva1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Nikolaeva_nv@pers.spmi.ru, ORCID ID: 0000-0001-7492-1847,
I.T. Kallaev1, Graduate Student, e-mail: kallaev1996@mail.ru,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

N.V. Nikolaeva, e-mail: Nikolaeva_nv@pers.spmi.ru.

Bibliography:

1. Aleksandrova Т. N. Integrated and deep processing of mineral raw materials of natural and man-made origin: state and prospects. Journal of Mining Institute. 2022, vol. 256, pp. 503—504. [In Russ].

2. Lusty P. A. J., Gunn A. G. Challenges to global mineral resource security and options for future supply. Geological Society London Special Publications. 2014, vol. 393, no. 1, pp. 265—276. DOI: 10.1144/SP393.13.

3. Romasheva N. V., Babenko M. A., Nikolaichuk L. A. Sustainable development of the Russian Arctic region: environmental problems and ways to solve them. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-2, pp. 78—87. [In Russ]. DOI: 10.25018/0236_1493_2022_102_0_78.

4. Sohn H. Y. Nonferrous metals: Production and history. Encyclopedia of Materials: Science and Technology. 2001, pp. 6191—6197. DOI: 10.1016/B978-0-12-803581-8.03608-0.

5. Gunn G., Bloodworth A. Briefing: Minerals security of supply. A geological perspective. Waste and Resource Management. 2012, vol. 165, no. 4, pp. 171—173. DOI: 10.1680/ warm.12.00018.

6. Polezhaev S. Y., Cheremisina O. V. Complex processing technology of gold-bearing concentrates: Autoclave leaching with subsequent roasting. Russian Journal of Non-Ferrous Metals. 2015, vol. 56, no. 4, pp. 404—408. DOI: 10.3103/S1067821215040185.

7. Chanturiya V. A. Scientific substantiation and development of innovative processes for the extraction of zirconium and rare earth elements in the deep and comprehensive treatment of eudialyte concentrate. Journal of Mining Institute. 2022, vol. 256, pp. 505—516. [In Russ]. DOI: 10.31897/PMI.2022.31.

8. Bragin V. I., Burdakova E. A., Usmanova N. F., Kinyakin A. I. Comprehensive assessment of flotation reagents by their influence on metal losses and flotation selectivity. Izvestiya Vuzov. Non-Ferrous Metallurgy. 2021, vol. 27, no. 5, pp. 4—12. [In Russ]. DOI: 10.17073/0021-3438-2021-5-4-12.

9. Romachev A., Kuznetsov V., Ivanov E., Jörg B. Flotation froth feature analysis using computer vision technology. E3S Web of Conferences. 2020, vol. 192, article 02022. DOI: 10.1051/ e3sconf/202019202022.

10. Ivanov A., Kruk M., Litvin V. Analysis of the hydrodynamic modeling market under the environmental conservation concept. E3S Web of Conferences. 2023, vol. 378, article 06015. DOI: 10.1051/e3sconf/202337806015.

11. Afanasova A. V., Aburova V. A., Prokhorova E. O., Lushina E. A. Investigation of the influence of depressors on flotation-active rock-forming minerals in sulphide gold-bearing ore flotation. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 161—174. [In Russ]. DOI: 10.25018/ 0236_1493_2022_62_0_161.

12. Yakovleva T. A., Romashev A. O., Mashevsky G. N. Digital technologies for optimizing the dosing of flotation reagents during flotation of non-ferrous metal ores. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 175—188. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_175.

13. Yang B., Yin W., Zhu Z., Wang D., Han H., Fu Y., Sun H., Chu F., Yao J. A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder Technology. 2019, vol. 354, pp. 358—368. DOI: 10.1016/j.powtec.2019.06.017.

14. Lavrinenko A. A., Makarov D. V., Shrader E. A., Sarkisova L. M. Enhancing selectivity of sulphide and flotation silicate separation during enrichment of low-sulphide platinum metal ore. Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya. Materialy XXIV Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, provodimoy v ramkakh XVII Ural'skoy gornopromyshlennoy dekady [Scientific foundations and practice of processing ores and man-made raw materials. Materials of the XXIV International Scientific and Technical Conference held within the framework of the XVII Ural Mining Decade], Ekaterinburg, 2019, pp. 112—116. [In Russ].

15. Chenyang Zhou, Yuemin Zhao, Chengguo Liu, Aleksandrova T., Yanjiao Li, Zhonglin Gao, Xuchen Fan, Chenlong Duan Fluidization expansion of novel generation dense medium and flow regime transition in gas-solid separation fluidized bed. Fundamental Research. 2023. DOI: 10.1016/j.fmre.2023.02.008.

16. Vasilyev A. M., Kuskov V. B. Specific features of the concentration process for finegrained materials in a short-cone hydrocyclone. Obogashchenie Rud. 2018, no. 2, pp. 30—34. [In Russ]. DOI: 10.17580/or.2018.02.06.

17. Lvov V. V., Chitalov L. S., Lagov P. B. Ore hardness properties evaluation based on industrial comminution circuits surveys. Eurasian Mining. 2022, no. 38, no. 2, pp. 54—57. DOI: 10.17580/em.2022.02.13.

18. Kuskov V. B., Lvov V. V., Yushina T. I. Increasing the recovery ratio of iron ores in the course of preparation and processing. CIS Iron and Steel Review. 2021, no. 21, pp. 4—8. DOI: 10.17580/cisisr.2021.01.01.

19. Khopunov E. A. The role of structure and strength characteristics of minerals in ore fracture and opening. Obogashchenie Rud. 2011, no. 1, pp. 25—31. [In Russ].

20. Alexandrova T. N., Chanturiya A. V. Choice of ore dressing scheme for ferruginous quartzite by simulation results. Obogashchenie Rud. 2023, no. 1, pp. 3—9. [In Russ]. DOI: 10. 17580/or.2023.01.01.

21. Khopunov E. A. The role of loading factors in formation of selective destruction of ores. Obogashchenie Rud. 2011, no. 2, pp. 24—30. [In Russ].

22. Gospodarikov A. P., Trofimov A. V., Kirkin A. P. Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading. Journal of Mining Institute. 2022, vol. 256, pp. 539—548. [In Russ]. DOI: 10.31897/PMI.2022.87.

23. Duryagina A. M., Talovina I. V., Lieberwirth H., Ilalova R. K. Morphometric parameters of sulphide ores as a basis for selective ore dressing. Journal of Mining Institute. 2022, vol. 256, pp. 527—538. [In Russ]. DOI: 10.31897/PMI.2022.76.

24. Mwanga A., Parian M., Lamberg P., Rosenkranz J. Comminution modeling using mineralogical properties of iron ores. Minerals Engineering. 2017, vol. 111, pp. 182—197. DOI: 10. 1016/j.mineng.2017.06.017.

25. Smith Y. R., Nagel J. R., Rajamani R. K. Eddy current separation for recovery of non-ferrous metallic particles. A comprehensive review. Minerals Engineering. 2019, vol. 133, pp. 149—159. DOI: 10.1016/j.mineng.2018.12.025.

26. Khokhlov S. V., Vinogradov Yu. I., Noskov A. P., Bazhenova A. V. Predicting displacements of ore body boundaries in generation of blasted rock pile. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 40—56. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_40.

27. Koteleva N., Khokhlov S., Frenkel I. Digitalization in open-pit mining: A new approach in monitoring and control of rock fragmentatio. Applied Sciences. 2021, vol. 11, no. 22, article 10848. DOI: 10.3390/app112210848.

28. Hesse M., Popov O., Lieberwirth H. Increasing efficiency by selective comminution. Minerals Engineering. 2017, vol. 103—104, рр. 112—126. DOI: 10.1016/j.mineng.2016.09.003.

29. Veasey T. J., Wills B. A. Review of methods of improving mineral liberation. Minerals Engineering. 1991, vol. 4, no. 7-11, pp. 747—752.

30. Yushina T. I., Van Trong N., Dumov A. M., Thuy N. T. Technology for processing quartzsericite ore by selective grinding and flotation. Eurasian Mining. 2022, vol. 38, no. 2, pp. 44—49. DOI: 10.17580/em.2022.02.11.

31. Mashevskiy G. N., Ushakov E. K., Yakovleva T. A. Digital technology for optimizing the sodium sulphide dosage during copper ore flotation. Obogashchenie Rud. 2021, no. 3, pp. 18—33. [In Russ]. DOI: 10.17580/or.2021.03.04.

32. Aleksandrova T. N., Chanturiya A. V., Kuznetsov V. V. Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit. Journal of Mining Institute. 2022, vol. 256, pp. 517—526. [In Russ]. DOI: 10.31897/ PMI.2022.58.

33. Hesse M. Selective comminution for dry pre-concentration and energy saving. Innovation-Based Development of the Mineral Resources Sector: Challenges and Prospects. Proceedings of the 11th Russian-German Raw Materials Conference. CRC Press. 2018, 167 p.

34. Harutyunyan M. A., Ohanesyan A. E. Distribution of gold and silver in ores of Kajaran copper-molybdenum deposit. Proceedings of NAS RA, Earth Sciences. 2018, vol. 71, no. 2, pp. 3—15. [In Russ].

35. Mahdiabadi N., Khanlari G. Prediction of uniaxial compressive strength and modulus of elasticity in calcareous mudstones using neural networks, fuzzy systems, and regression analysis. Periodica Polytechnica Civil Engineering. 2018, vol. 63, no. 1. DOI: 10.3311/PPci.13035.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.