Back to search

Transfer of rare-earth elements from coals of the Sergeevskoe deposit in solution

Samples of brown coal from the Sergeevskoe deposit (Amur region) were subjected to a series of experiments on one-stage leaching of rare earth elements with hydrochloric and acetic acids in order to determine operating parameters, which included the type of acid, its concentration and the time of contact of the acid with the coal. Extraction was carried out by varying the contact time from 15 minutes to 48 hours with constant stirring. The concentrations of hydrochloric acid used were 1 M, 3 M and 4.8 M. A high percentage of rare earth elements (74–97%) are extracted with weakly concentrated hydrochloric acid (1 M). This indicates that the main part of rare earth elements in the coal under study is presented in the form of complex compounds with fulvic and humic acids or salts that are soluble in acid solutions. The recovery of scandium at room temperature is significantly less than that of yttrium and lanthanides, which is due to the form of scandium, since it is mainly associated with silicate mineral forms. Scandium extraction almost doubles to 88.7% when heated to 75 °C. Coals from the Sergeevskoye deposit can be used as a source of rare earth elements.

Keywords: Sergeevskoe deposit, brown coals, rare earth elements, leaching, hydrochloric acid, acetic acid, contact time, forms of occurrence.
For citation:

Radomskaya V. I., Sorokin A. P., Shumilova L. P. Transfer of rare-earth elements from coals of the Sergeevskoe deposit in solution. MIAB. Mining Inf. Anal. Bull. 2024;(7-1):148–158. [In Russ]. DOI: 10.25018/0236_1493_2024_71_0_148.

Acknowledgements:

The study was supported by the Russian Science Foundation, Grant No. 22-27-00116.

Issue number: 7
Year: 2024
Page number: 148-158
ISBN: 0236-1493
UDK: 552.576.1+550.4.02
DOI: 10.25018/0236_1493_2024_71_0_148
Article receipt date: 07.03.2024
Date of review receipt: 23.05.2024
Date of the editorial board′s decision on the article′s publishing: 10.06.2024
About authors:

V.I. Radomskaya1, Cand. Sci. (Chem.), Leading Researcher, e-mail: radomskaya@ascnet.ru, ORCID ID: 0000-0002-3023-7565,
A.P. Sorokin1, Corresponding Member of Russian Academy of Sciences, Chief Researcher, e-mail: sorokinap@ignm.ru, ORCID ID: 0000-0001-8918-3787,
L.P. Shumilova1, Dr. Sci. (Biol.), Senior Researcher, e-mail: shumilova.85@mail.ru, ORCID ID: 0000-0003-4128-9157,
1 Institute of Geology and Nature Management, Far Eastern Branch of Russian Academy of Sciences, 675000, Blagoveshchensk, Russia.

 

For contacts:

V.I. Radomskaya, e-mail: radomskaya@ascnet.ru.

Bibliography:

1. Dai S., Finkelman R. B. Coal as a promising source of critical elements: Progress and future prospects. International Journal of Coal Geology. 2018, vol. 186, pp. 155—164. DOI: 10.1016/J. COAL.2017.06.005.

2. Popov N. Yu., Chekryzhov I. Yu., Tarasenko I. A., Kasatkin S. A., Kholodov A. S. Structural and geochemical features of coal-bearing sediments and sources of rare element impurities in coals of the Rakovka depression (Primorsky Krai, Russia). International Journal of Coal Science & Technology. 2022, vol. 9, article 14. DOI: 10.1007/s40789-022-00486-0.

3. Vyalov V. I., Nastavkin A. V., Shishov E. P., Chernyshev A. A. The criteria for predicting and prospecting of metal-bearing coals in the Far East of Russia. Geosfernye issledovaniya. 2023, no. 2, pp. 33—48. [In Russ]. DOI: 10.17223/25421379/27/4.

4. Arbuzov S. I., Chekryzhov I. Yu., Tarasenko I. A. Rare metal potential of coals of Siberia and the Russian Far East and prospects for its development. Vestnik of the Far East Branch of the Russian Academy of Sciences. 2023, no. 5, pp. 31—51. [In Russ]. DOI: 10.37102/0869-7698_2023_231_05_3.

5. Vyalov V. I., Nastavkin A. V., Shishov E. P. New data on the metal content of Sakhalin coals. Khimiya tverdogo topliva. 2022, no. 6, pp. 25—29. [In Russ]. DOI: 10.31857/S0023117722060123.

6. Yue T., Lu S., Chong F., Rongyi Y., Jianhua Q., Hanxun J., Ying Z. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environmental Pollution. 2022, vol. 298, article 118540. DOI: 10.1016/j.envpol.2021.118540.

7. Sun G., Li Z., Liu T., Chen J., Wu T., Feng X. Rare earth elements in street dust and associated health risk in a municipal industrial base of central China. Environmental Geochemistry and Health. 2017, vol. 39, no. 6, pp. 1469—1486. DOI: 10.1007/s10653-017-9982-x.

8. Nechaev A. V., Polyakov E. G. Current and future balance of production and consumption of rare earth metals in Russia. Mineral resources of Russia. Economics & management. 2020, no. 2, pp. 49—53. [In Russ].

9. Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers. 2019, vol. 10, no. 4, pp. 1285—1303. DOI: 10.1016/j.gsf.2018.12.005.

10. Migaszewski Z. M., Galuszka A. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: A review. Critical Reviews In Environmental Science and Technology. 2015, vol. 45, pp. 429—471. DOI: 10.1080/10643389.2013.866622.

11. He M. L., Ranz D., Rambeck W. A. Study on the performance enhancing effect of rare earth elements in growing and fattening pigs. Journal of Animal Physiology and Animal Nutrition. 2001, vol. 85, no. 7-8, pp. 263—270. DOI: 10.1046/j.1439-0396.2001.00327.x.

12. Voncken J. H. L. The rare earth elements — an introduction. Netherlands, Springer, 2016, 127 р. DOI: 10.1007/978-3-319-26809-5.

13. Goodenough K. M., Wall F., Merriman D. The rare earth elements: demand, global resources, and challenges for resourcing future generations. Natural Resources Research. 2018, vol. 27, pp. 201—216. DOI: 10.1007/s11053-017-9336-5.

14. Gaustad G., Williams E., Leader A. Rare earth metals from secondary sources: Review of potential supply from waste and byproducts. Resources, Conservation and Recycling. 2021, vol. 167, article 105213. DOI: 10.1016/j.resconrec.2020.105213.

15. Sorokin A. P., Ageev O. A., Dugin S. V., Popov A. A. Metal content of brown coals of the Raychikhinsky deposit (Amur region, Far East): conditions of accumulation, distribution, development prospects (review). Khimiya tverdogo topliva. 2023, no. 1, pp. 13—31. [In Russ]. DOI: 10.31857/ S0023117723010097.

16. Radomskaya V. I., Shumilova L. P., Noskova L. P., Sorokin A. P., Pavlova L. M., Ivanov V. V. Localization of rare-earth elements in coals of the Sergeevskoye deposit (Amur region). Doklady Rossiyskoy akademii nauk. Nauki o Zemle. 2022, vol. 507, no. 2, pp. 217—223. [In Russ]. DOI: 10.31857/S2686739722601776.

17. Radomskaya V. I., Shumilova L. P., Noskova L. P., Sorokin A. P., Pavlova L. M., Dugin S. V., Soktoev B. R., Poselyuzhnaya A. V., Ivanov V. V. Forms of occurrence of rare earth elements in Miocene brown coals of the Sergeevskoe deposit (Amur Region, Far East). Khimiya tverdogo topliva. 2023, no. 1, pp. 32—46. [In Russ]. DOI: 10.31857/S0023117723010061.

18. Ketris M. P., Yudovich Y. E. Estimations of clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals. International Journal of Coal Geology. 2009, vol. 78, no. 2, pp. 135—148. DOI: 10.1016/j.coal.2009.01.002.

19. Imash A. A., Kajdar B. B., Zhumataev E. A., Smagulova G. T. Ways of complex processing of coal. Gorenie i plazmohimiya. 2021, vol. 19, no. 4, pp. 327—338. [In Russ].

20. Milovskiy A. V. Mineralogiya i petrografiya [Mineralogy and petrography], Moscow,Nedra, 1985, 432 p.

21. Arens V. Zh. Fiziko-khimicheskaya geotekhnologiya [Physical and chemical geotechnology], Moscow, 2001, 656 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.