Back to search

Improving the environmental efficiency of ore materials drying based on inertial gravity air separation

Experimental studies and computer analysis of aerodynamic processes carried out at the mine furnaces of Kostanay Minerals JSC confirmed the hypothesis of the predominant influence of the concentration, median diameter, dispersion, temperature and humidity of dust on the efficiency of dust collection, a significant influence on the temperature and humidity of ore dust in the pneumatic dryer of the parameters of the direct flow. The Archimedes force, taking into account gravity, acting on ore dust in the direct current, causes a decrease in the value of the Froude criterion and, as a result, a significant increase in the concentration of lowtemperature wet dust from the direct current relative to the concentration of high-temperature dry dust from the counterflow, at the outlet of the furnace, which significantly reduces the efficiency of dust collecting equipment. In order to reduce the concentration of dust at the outlet of the dryer as a result of increasing the efficiency of dust-collecting equipment, a device built directly into it, operating on the principle of inertial-gravitational, thermal separation, is proposed. To ensure optimal parameters of ore dust at the outlet of the mine furnace by reducing the Stokes equation of motion of a two-phase medium to a one-parameter problem on the dust relaxation factor, a mathematical model of the aeroseparation of dust particles directly in the dryer of the mine furnace as a function of the flow rate, coolant temperature and geometric parameters of the aeroseparator has been developed. The use of an aeroseparator built into the dryer made it possible to increase the environmental efficiency of the shaft furnace to 75−85%, thereby reducing the concentration of aerosol at the outlet by at least 3 times. The proposed design of the aeration separator is currently being used to improve the environmental efficiency of the HSE No. 9 of the DiShr workshop of Kostanay Minerals JSC.

Keywords: Еnvironmental efficiency, aeroseparations, median diameter, dryer, inlet collector, Stokes force, Archimedes, aerosol.
For citation:

Makarov V. N., Akhmetov R. G., Makarov N. V., Arslanov A. A. Improving the environmental efficiency of ore materials drying based on inertial gravity air separation. MIAB. Mining Inf. Anal. Bull. 2024;(1-1):74—86. [In Russ]. DOI: 10.25018/0236_1493_2024_011_0_74.

Issue number: 1
Year: 2024
Page number: 74-86
ISBN: 0236-1493
UDK: 66.047.544
DOI: 10.25018/0236_1493_2024_011_0_74
Article receipt date: 15.05.2023
Date of review receipt: 04.09.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

Makarov V. N., Dr. Sci. (Eng.), Associate Professor, FGBOU VO “USGU”,, email:;
Akhmetov R. G., chief mechanic, JSC Kostanay Minerals, email:;
Makarov N. V., Cand. Sci. (Eng.), Associate Professor, FGBOU VO “USGU”, orcid. org/0000-0001-7039-6272, email: (сorresponding author);
Arslanov A. A. — student, FGBOU VO “USGU”,, email:


For contacts:

1. Kornilov G., Gazizova O., Bunin A., Bulanov, M., Karyakin A. L. Improving the quality of voltage in the conditions of the oxygen-converter shop of metallurgical production (2019) Proceedings ICOECS 2019: 2019 International Conference on Electrotechnical Complexes and Systems, article №8949928, DOI:10.1109/ICOECS46375.2019.8949928.

2. Davydov S. Y., Valiev N. G., Tauger V. M. Effect of the Flow of Transported Bulk Material on Design Features of a Belt Conveyor. Refractories and Industrial Ceramics. 2019. 60 (1), pp. 10−13. DOI:10.1007/s11148-019-00301-5.

3. Lyaptsev S. A. Classification of granular material in an impact with a separation surface/ Lyaptsev S. A., Davydov S. Y./Refractories and Industrial Ceramics. 2015, Vol. 55, no. 6, pp.570–572.

4. Kychkin A. V., Nikolaev A. V. Architecture of a Cyber-Physical System for the Mining Enterprise Ventilation Control Based on the Internet of Things Platform. Mekhatronika, Avtomatizatsiya, Upravlenie. 2021;22(3):115−123. [In Russ].

5. Fair R., Laar J. H., Nell K., Nell D., Mathews E. H. Simulating the sensitivity of underground ventilation networks to fluctuating ambient conditions. South African Journal of Industrial Engineering November. 2021, vol. 32, no. 3, pp. 42−51. DOI: 10.7166/32−3-2616.

6. Velikanov V. S., Dyorina N. V., Suslov N. M., Luntsova A. I., Rabina E. I. Automation of design for dynamic loading at the designing stage of mining machinery (2019) Journal of Physics: Conference Series, 1399 (3), article №033010, рр. 1−5. DOI: 10.1088/1742−6596/1399/3/033010.

7. Tarasov P. I., Khazin M. L., Golubev O. V. Reducing the environmental burden of the mining industry of the northern and Arctic territories. MIAB. Mining Inf. Anal. Bull. 2019, no. 7, pp. 74−82.

8. Alexandrova T. N., Afanasova A. V., Kuznetsov V. V., Babenko T. A. Investigation of the processes of selective disintegration of copper-nickel ores of the Polar deposit. MIAB. Mining Inf. Anal. Bull. 2021, no. 12, pp. 73-87. [In Russ]. DOI: 10.25018/0236_1493_202 1_12_0_73.

9. Sharov N. A., Dudayev R. R., Krishchuk D. I., Liskova M. Yu. Dust suppression methods in coal mines of the Far North. Perm Journal of Petroleum and Mining Engineering, 2019, vol.19, no.2, рр. 184−200. [In Russ]. DOI: 10.15593/2224−9923/2019.2.8.

10. Pelevin A. E., Sytykh N. A., Cherepanov D. V. The effect of particle size on the efficiency of dry magnetic separation. MIAB. Mining Inf. Anal. Bull. 2021, no. 11−1, pp. 293−305. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_293.

11. Romanchenko S. B., Timchenko A. N., Kosterenko V. N., Pozdnyakov G. A., Rudenko Yu. F., Artemyev V. B., Kopylov K. N. Complex dedusting. M.: Publishing house “Mining” LLC “Cimmerian Center”, 2016. 288 p. [In Russ].

12. Burenin, V. V. Removing harmful substances from the dusty emissions enterprises. Ekologiya proizvodstva Production ecology, 2014, 12, pp.56−63. [In Russ].

13. Bosikov I. I., Klyuev R. V., Khetagurov V. N., Azhmukhamedov I. M. Development of methods and means of controlling aerogasdynamic processes in mining areas. Sustainable development of mountain regions. 2021, Vol. 13, no. 1, pp. 77–83. [In Russ]. DOI: 10.21177/1998-4502-2021-13−1-77−83.

14. Makarov V. N., Davydov S. Y., Makarov N. V. Genesis of ecotechnology efficiency in the production of dust-forming materials. New Refractories. 2019;(2): pp.55−59. [In Russ]. DOI.10.17073/1683-4518-2019-2-55−59.

15. Makarov V. N., Makarov N. V., Plotnikov N. S., Potapov B. B. Mathematical modeling of vortex hydraulic spraying at mining and processing enterprises.. MIAB. Mining Inf. Anal. Bull. 2018, no. 4, pp. 210−217. [In Russ]. DOI: 10.25018/0236-1493-2018-4-0−210−217.

16. Antipov S. T., Zhuravlev A. V., Kazartsev D. A., Borodkina A. V., Nesterov D. A. Combined apparatuses with swirling coolant flow for drying dispersed materials//Bulletin of the Voronezh State University of Engineering Technologies. 2014, pp. 52–58. [In Russ].

17. Yuryev B. P., Goltsev V. A., Maltsev V. A., & Savin V. A. Drying of chrysotile ore in vertical mine-type apparatuses. Building materials. 2016; No. 8. p. 80−84. [In Russ].

18. Wu D., Yin K., Yin Q., Zhang X., Cheng J., Ge D., Zhang P. Reverse circulation drilling method based on a supersonic nozzle for dust control. Applied Sciences. 2017, vol. 7, no. 1, pp. 5−20. DOI: 10.3390/app7010005.

19. Boikov A. V., Savelyev R. V., Payor V. A. Application of numerical modeling in the mining and metallurgical field / Collection of selected articles based on materials of scientific conferences of the GNII “National Development”. St. Petersburg, 2019. pp. 31–34.

20. Torshizi S. A. M., Benisi A. H., Durali M. Numerical optimization and manufacturing of the impeller of a centrifugal compressor. Scenting Iranica, 2017, No 24, pp.707–714. DOI:10.1115/GT2016−57105.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.