Back to search

The use of conveyor trains as external transport for enrichment enterprises

Over the past few decades, the energy consumption of modern conveyor belts has decreased significantly. Although extensive research has been conducted into the production of energy-efficient belt conveyors, there remains significant scope for further reduction of energy consumption, especially when considering heavily loaded or long ground belt conveyors. There is a technology that combines the advantages of both belt conveyors and rail transport, creating a highly efficient and economical system for transporting bulk materials, known as a conveyor train. This article presents the world experience of operating various types of transport, especially conveyor trains and conveyor belts. A conveyor train is a system of continuous transportation of bulk materials, which, thanks to iron wheels moving on steel rails, has rolling resistance similar in magnitude to railway systems. The new development provides an innovative departure from traditional bulk materials transportation systems with significant energy and economic benefits. The results show that conveyor trains have a number of unsolved problems in the areas of economy, energy efficiency, routing and optimal design, however, this type of transport has more advantages compared to locomotive rolling due to the lowest energy consumption and reduced staff.

Keywords: conveyor train, efficiency, locomotive haulage, external transport, automation, intermediate drive, friction drive, railveyor.
For citation:

Trufanova I. S., Nevzorov D. N. The use of conveyor trains as external transport for enrichment enterprises. MIAB. Mining Inf. Anal. Bull. 2023;(9-1):64-78. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_64.

Acknowledgements:
Issue number: 9
Year: 2023
Page number: 64-78
ISBN: 0236-1493
UDK: 622.62
DOI: 10.25018/0236_1493_2023_91_0_64
Article receipt date: 02.05.2023
Date of review receipt: 03.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

I.S. Trufanova1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Trufanova_IS@pers.spmi.ru, ORCID ID: 0000-0003-3182-9746,
D.N. Nevzorov1, Graduate Student, e-mail: danilnevzorov@bk.ru,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

I.S. Trufanova, e-mail: Trufanova_IS@pers.spmi.ru.

Bibliography:

1. Gromov E. V. Analysis of contemporary state and development prospects for trunk mine transport in deep mining. Mezhdunarodnaya mezhdistsiplinarnaya nauchnaya geokonferentsiya po geodezicheskoy s"emke i upravleniyu ekologiey gornykh rabot, SGEM [International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM], 2018, vol. 18, no. 1.3, pp. 63—70. [In Russ]. DOI: 10.5593/SGEM2018/1.3/S03.009.

2. Gromov E. V. Substantiation of the possibility of reconstruction of the underground transport scheme of the mine during the transition to promising methods of ore transportation (on the example of the mountains. +170 m of the Kukisvumchorr deposit). Problems of Subsoil Use. 2017, vol. 12, no. 1, pp. 37—47. [In Russ]. DOI: 10.18454/2313-1586.2017.01.038.

3. Yakovlev V. L., Beresnev V. A., Glebov A. V., Marinin M. А. Selecting cyclical-andcontinuous process flow diagrams for deep open pit mines. Zhurnal gornoy nauki. 2019, vol. 55, no. 5, pp. 783—788. [In Russ]. DOI: 10.1134/S106273911905615X.

4. Wheeler C. A. Development of the rail conveyor technology. International Journal of Mining, Reclamation and Environment. 2019, vol. 33, no. 2, pp. 118—132. DOI: 10.1080/17480930.2017.1352058.

5. Stenin D. On possible changes in the calculation of parameters of transport technology of open pit mining with the use of autonomous heavy platforms. E3S Web of Conferences. 2021, vol. 315, no. 9, article 03015. DOI: 10.1051/e3sconf/202131503015.

6. Zhang S., Xia X. Modeling and energy efficiency optimization of belt conveyors. Applied Energy. 2011, vol. 88, no. 9, pp. 3061—3071. DOI: 10.1016/j.apenergy.2011.03.015.

7. Ismagilov R. I., Kozub A. V., Badtiev B. P., Pavlovich B. P. Experience of using (testing) ground penetrating radar on construction site for steeply inclined conveyor complex in southern pit of mikhailovsky GOK. Russian Mining Industry Journal. 2020, no. 1, pp. 120—126. [In Russ]. DOI: 10.30686/1609-9192-2020-1-120-126.

8. Timofeev I. P., Bolshunov A. V., Stolyarova M. S., Avdeev A. M. Features of pulling equipment operation in curved railroad sections. MIAB. Mining Inf. Anal. Bull. 2019, no. 1, pp. 171—178. [In Russ]. DOI: 10.25018/0236-1493-2019-01-0-171-178.

9. Munzenberger P., Wheeler C. Laboratory measurement of the indentation rolling resistance of conveyor belts. Measurement: Journal of the International Measurement Confederation. 2016, vol. 94, pp. 909—918. DOI: 10.1016/j.measurement.2016.08.030.

10. Potryasaev Y. A., Pianykh A. A., Brezshnev I. V. Organizing of the Rock transportation by Railway Transport. Gornyi Zhurnal. 2017, vol. 5, pp. 36—37. [In Russ]. DOI: 10.17580/gzh.2017.05.07.

11. Rahman A. A dynamic analysis of the rail conveyor system. Handling and Transportation. 2019, vol. 35, no. 4, pp. 291—301.

12. Makharatkin P. N., Abdulaev E. K., Vishnyakov G. Yu., Botyan E. Yu., Pushkarev A. E. Improving the efficiency of the functioning of quarry dump trucks based on the justification of their rational speed using simulation modeling. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 237—250. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_237.

13. Mikhailov A. V., Kazakov Yu. A., Garufullin D. R., Korotkova O. Yu., Agaguena A. Analysis of the mobile complex structure for organogenic materials mining by in-pit method. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 317—330. [In Russ]. DOI: 10.25018/0236_1 493_2022_61_0_317.

14. Popov S. O., Malinowskii Y. A., Danilina G. V., Kozyrev S. N. The application features of conveyor trains at mining on deep horizons. Metallurgical and Mining Industry. 2015, vol. 7, no. 9, pp. 1163—1167.

15. Han J., Ruiqian W.,Wang D. Effect of wheel load on wheel vibration and sound radiation. Chinese Journal of Mechanical Engineering. 2015, vol. 28, no. 1, pp. 46—54. DOI: 10.3901/ CJME.2014.1110.165.

16. Hao N., Zhang J., Zhang M., Zhang Y. Experimental research on vibration and noise of rail conveyor. Energy Reports. 2021, vol. 7. pp.494—504. DOI: 10.1016/j.egyr.2021.10.013.

17. Mosleh A., Meixedo A. Early wheel flat detection: an automatic datadriven wavelet-based approach for railways. Vehicle System Dynamics. 2022, no. 1, pp. 115—139. DOI: 10.1080/00423114.2022.2103436.

18. Deladi E. L., de Rooij M. B., Schipper D. J. Modelling of static friction in rubber-metal contact. Tribology International. 2007, vol. 4, no. 40, pp. 588—594. DOI: 10.1016/j.triboint.2005.11.007.

19. Ma B. Estimation of road adhesion coefficient based on tire aligning torque distribution. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME. 2018, no. 5, pp. 140. DOI: 10.1115/1.4038095.

20. Shiri A., Shoulaie A. Design optimization and analysis of single-sided linear induction motor, considering all phenomena. IEEE Transactions on Energy Conversion. 2012, vol. 27, no. 2, pp. 516—525. DOI: 10.1109/TEC.2012.2190416.

21. Sarapulov F. N., Smolyanov I. A., Rodionov I. E. Investigation of traction linear induction motor for conveyor train. Materialy 17-y Mezhdunarodnoy Ural'skoy konferentsii po elektroprivodam peremennogo toka ACED-2018 [Materials of the 17th International Ural Conference on AC Electric Drives ACED-2018]. 2018, vol. 18, pp. 1—4. [In Russ]. DOI: 10.1109/ ACED.2018.8341685.

22. Kargin V. A., Volgin A. V., Moiseev A. P., Maradudin A. M., Leontiev A. A., Peretyatko A. V. Linear stepping electromagnetic engine for driving conveyors. Journal of Physics Conference Series. 2019, vol. 1333, no. 5, article 052011. DOI: 10.1088/1742-6596/1333/5/052011.

23. Piotrowski J., Kik W. A simplified model of wheel rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations. Vehicle System Dynamics. 2008, vol. 1, no. 46, pp. 27—48. DOI: 10.1080/00423110701586444.

24. Bureika G., Lingaitis L. P., Mikaliūnas Š. Investigation of dynamic models of independently rotating wheels of wagons. Transport. 2004, vol. 1, no. 19, pp. 28—31. DOI: 10.1080/ 16484142.2004.9637949.

25. Mikhailov E., Semenov S., Shvornikova H., Gerlici J., Kovtanets M., Dižo J., Blatnický M., Harušinec J. A study of improving running safety of a railway wagon with an independently rotating wheel’s flange. Symmetry. 2021, vol. 13, no. 10, article 1955. DOI: 10.3390/sym13101955.

26. Shrestha S. Investigation on how rail surface self-cleaning changes the locomotive traction dynamics. Lecture Notes in Mechanical Engineering. 2022, pp. 332—341. DOI: 10.1007/ 978-3-031-07305-2_34.

27. Seryy A. M., Pozhevannyy A. V. Control of linear induction motors for belt-conveyor trains. MIAB. Mining Inf. Anal. Bull. 2007, no. 1, pp. 148—149. [In Russ].

28. Budiwantoro B., Agus Kariem M., Basia R. R., Prima G. Stability analysis of rail-conveyor for coals transportation. Applied Mechanics and Materials. 2015, vol. 758, pp. 89—93. DOI: 10.4028/www.scientific.net/AMM.758.89.

29. Tomioka T. Research topics on railway vehicle dynamics. EPI International Journal of Engineering. 2018, vol. 1, no. 2, pp. 1-12. DOI: 10.25042/epi-ije.082018.01.

30. Ralston J., Reid D., Hargrave C., Hainsworth D. Sensing for advancing mining automation capability. A review of underground automation technology development. International Journal of Mining Science and Technology. 2014, vol. 24, no. 3, pp. 305—310. DOI: 10.1016/j. ijmst.2014.03.003.

31. Bobojanov M. K. Study of the efficiency of conveyors of mining transport systems of mining complexes. E3S Web of Conferences. 2020, vol. 177, no. 5, article 03023. DOI: 10.1051/ e3sconf/202017703023.

32. Dovhaniuk S., Shaposhnyk V. Yu., Shatunov O. V., Shatunov A., Visloguzov V. The results of brake tests of the DPKr-3 diesel train. IOP Conference Series. Materials Science and Engineering. 2020, vol. 985, no. 1, article 012020. DOI: 10.1088/1757-899X/985/1/012020.

33. Sun W., Zhang J., Liu Z. Two-time-scale redesign for antilock braking systems of ground vehicles. IEEE Transactions on Industrial Electronics. 2019, vol. 6, no. 66, pp. 4577—4586. DOI: 10.1109/TIE.2018.2864719.

34. Kurganov, V. M., Gryaznov, M. V., Kolobanov, S. V. Assessment of operational reliability of quarry excavator-dump truck complexes. Journal of Mining Institute. 2020, vol. 241, pp. 10. [In Russ]. DOI: 10.31897/pmi.2020.1.10.

35. Safiullin R. N., Afanasyev A. S., Reznichenko V. V. The concept of development of monitoring systems and management of intelligent technical complexes. Journal of Mining Institute. 2019, vol. 237, pp. 322. [In Russ]. DOI: 10.31897/PMI.2019.3.322.

36. Al-Assi M., Kassem E. Evaluation of adhesion and hysteresis friction of rubber-pavement system. Applied Sciences. 2017, vol. 10, no. 7. DOI: 10.3390/app7101029.

37. Zaytsev P. M., Chemeris I. F. Patent SU 967898. 1982.

38. Kondratenko, A. S. Technological aspects of cased wells construction with cyclical-flow transportation of rock. Journal of Mining Institute. 2020, vol. 246, pp. 610—616. [In Russ]. DOI: 10.31897/pmi.2020.6.2.

39. Muller S., Blundell M. The testing of pneumatic tyres for the interpretation of tyre behaviour for road rail vehicles when operating on rails. Proceedings of the Institution of Mechanical Engineers. Part D Journal of Automobile Engineering. 2023, vol. 2, pp. 639—645. DOI: 10.1177/09544070221148289.

40. Wheatley G., Rubel R. I. Analysis of conveyor drive power requirements in the mining industry. Acta Logistica. 2021, vol. 8, no. 1, pp. 37—43. DOI: 10.22306/al.v8i1.200.

41. Wheeler C. A. Rotating resistance of belt conveyor idler rolls. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 2016, vol. 138, no. 4, pp. 19. DOI: 10.1115/1.4031552.

42. Robinson P. W., Orozovic O., Meylan M. H., Wheeler C. A., Ausling D. Optimization of the cross section of a novel rail running conveyor system. Engineering Optimization. 2021. DOI: 10.1080/0305215X.2021.1956486.

43. Tartakovskiy B. N. Konveyernye poezda v gornoy promyshlennosti [Conveyor trains in the mining industry], Kiev, Naukova dumka, 1974, 200 p.

44. Popov P. O., Malinovsky Yu. A., Danilina G. V. The use of conveyor trains for transporting iron ore raw materials from deep mines and quarries. Nauchnye trudy Sworld. 2015, vol. 3, no. 1(38), pp. 88—96. [In Russ].

45. Chen X., Jiang H., Chen L., Du W., Gong S. Experimental study on creep characteristics of unloaded rock masses for excavation of rock slopes in cold areas. Applied Sciences. 2023, vol. 13, no. 5, pp. 1—13. DOI: 10.3390/app13053138.

46. Koptev V. Yu., Kopteva A. V., Ivanova T. S. Directions for the development of transport machines for open-pit mining. Journal of Applied Engineering Science. 2021, vol. 19, no. 1, pp. 137—141. DOI: 10.5937/jaes0-28708.

47. Carr M. J., Wheeler C. A., Robinson P. W., Chen B. Reducing the energy intensity of overland conveying using a novel rail-running conveyor system. International Journal of Mining, Reclamation and Environment. 2020, vol. 35, no. 3, pp. 1—16. DOI: 10.1080/17480930.2020.1788199.

48. Jiang Y., Peng P., Wang L., Wang J., Wu J., Liu Y. Lidar-Based local path planning method for reactive navigation in underground mines. Remote Sensing. 2023, vol. 15, no. 2, article 309. DOI: 10.3390/rs15020309.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.