Back to search

Forecast of technological indicators of X-ray fluorescence separation by ore fractional characteristics

The forecast of the enrichment of any mineral raw materials is based on fractional characteristics that allow us to estimate the maximum enrichment by the chosen method of enrichment. This is especially evident for sensor-based sorting methods when using surface methods of obtaining information, such as, for example, X-ray fluorescence separation. In this case, the fractional characteristics have properties related to the measurement geometry of the surface properties of the lumps. The paper analyzes the lump mineral nonuniformity on a lump sample of copper ore. It is revealed that the nonuniformity of the surface mineralization of the lumps increases as the value of the analytical parameter increases too. To assess the measure of nonuniformity, indicators of absolute values are more informative, such as, for example, the mean square deviation and the sum of the modulus of deviation from the mean value. It is established that particular implementations differ from each other and require averaging of the probability distribution density function of the analytical parameter, which is used as a sign of separation, for the subsequent prediction of enrichment. Experimental partial and averaged fractional characteristics for the studied copper ore sample were obtained. For the accepted separation boundaries, the ideal technological parameters of pre-concentration using X-ray fluorescence separation were determined, and a conclusion was made about the potential enrichment of the ore studied by X-ray fluorescence separation.

Keywords: preliminary ore dressing, X-ray fluorescence separation (XRF); mineralization type; measure of mineral nonuniformity; fractional characteristics; probability distribution density; analytical parameter; forecast of technological indicators; copper ore.
For citation:

Tsypin E. F., Ovchinnikova T. Yu., Efremova T. A., Ziyatdinov S. V. Forecast of technological indicators of X-ray fluorescence separation by ore fractional characteristics. MIAB. Mining Inf. Anal. Bull. 2024;(1-1):87—101. [In Russ]. DOI: 10.25018/0236_1493_2024_011_0_87.

Issue number: 1
Year: 2024
Page number: 87-101
ISBN: 0236-1493
UDK: 622.725 : 535.3
DOI: 10.25018/0236_1493_2024_011_0_87
Article receipt date: 15.05.2023
Date of review receipt: 22.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

Tsypin E. F., ORCID iD 0000-0003-3921-2695, Dr. Sci. (Eng.), Professor, Professor of the Mineral Dressing Department, Federal State Budgetary Educational Institution of Higher Education “Ural State Mining University”, 30 Kuibyshev str., Yekaterinburg, Russia, 620144, office phone: + 7(343) -275−91−54,;
Ovchinnikova T. Yu., ORCID iD 0000-0001-7000-9295, Cand. Sci. (Eng.), Associate Professor of the Mineral Dressing Department, Federal State Budgetary Educational Institution of Higher Education “Ural State Mining University”, 30 Kuibyshev str., Yekaterinburg, Russia, 620144,;
Efremova T. A., ORCID iD 0000-0002-9917-6676, Cand. Sci. (Eng.) , Senior Researcher of the Laboratory of Mineral Dressing of Non-ferrous Metal Ores and Technogenic Raw Materials, Mineral Dressing Department of JSC “Uralmekhanobr”, 87 Khokhryakova str., Yekaterinburg, Russia, 620144,;
Ziyatdinov S. V., ORCID iD 0009-0006-6621-3748, Researcher of the Laboratory of Mineral Dressing of Non-ferrous Metal Ores and Technogenic Raw Materials, Mineral Dressing Department of JSC “Uralmekhanobr”, 87 Khokhryakova str., Yekaterinburg, Russia, 620144,


For contacts:

Ovchinnikova T.Yu., e-mail:


1. Tikhonov O. N. Regularities of effective minerals separation in the processes of mineral dressing. Moskva: Nedra, 1984. 208 p. [In Russ].

2. Tatarnikov A. P., Asonova N. I., Balkina I. G., Naumov M. E., Konovalov G. N., Voevodin I. V. Modern technologies and equipment for radiometric concentration of uranium ores. Gornyi Zhurnal [Mining Journal], 2007, no. 2, pp. 85–87. [In Russ].

3. Kultyshev V. I., Kolesaev V. B., Litvinenko V. G., Brukhovetsky O. S. Improving the efficiency of underground mining of uranium deposits. Moscow, MGIU, 2007, 212 p. [In Russ].

4. Rassulov V. A., Nerushchenko E. V. Laser-photometric lump separation of gold-bearing ore. Obogashcheniye Rud [Mineral Dressing]. 2020, no. 5, pp. 16–22. [In Russ]. DOI: 10.17580/or.2020.05.03.

5. Zabolotsky A. I., Nerushchenko E. V., Results of research on the applicability of preenrichment methods for gold ores from Highland Gold mining ltd deposits. Ratsional’noye osvoyeniye nedr [Rational development of subsoil]. 2020, no. 4, pp. 64–70. [In Russ]. DOI: 10.26121/RON.2020.57.68.008.

6. Sanakulov K. S., Rudnev S. V., Kantsel’ A. V. About the possibility of mining the Uchkulach deposit using the technology of X-ray radiometric processing of lead-zinc ores. Gornyy vestnik Uzbekistana [Mining Bulletin of Uzbekistan]. 2011, no. 1(44), pp. 17–20. [In Russ].

7. Burdakova E. A., Bragin V. I., Usmanova N. F., Vashlaev A. O., D’yachenko L. E., Lesnikova L. S., Fertikov A. I. Radiometric separation in grinding circuit of copper–nickel ore processing. Journal of Mining Science. 2019, vol. 55, iss. 5, pp. 824–831. DOI: 10.1134/ S1062739119056197.

8. Li L., Li G., Li H., Li G., Zhangc D., Klein B. Bench-scale insight into the amenability of case barren copper ores towards XRF-based bulk sorting. Minerals Engineering. 2018, vol. 121, pp. 129–136. DOI: 10.1016/j.mineng.2018.02.023.

9. Mikysek P., Trojek T., Mészárosová N., Adamovič J., Slobodník M. X-ray fluorescence mapping as a first-hand tool in disseminated ore assessment: sandstone-hosted U–Zr mineralization. Minerals Engineering. 2019, vol. 141. DOI: 10.1016/j.mineng.2019.105840.

10. Priscila Maria Esteves Brandão, Camila Menezes Senna, Lucas Barreto Napoli, Edwardes Antônio Dias Junior, Vinícius Souto Morais Reis Applicability of sensor based sorting technology for processing lithium in pegmatites. Brazilian Journal of Development, Curitiba. 2023, vol. 9, no. 3, pp. 12504–12515. DOI: 10.34117/bjdv9n3−232.

11. Rui Sousa, Aurora Futuro, António Fiúza, Mário Machado Leite. Pre-concentration at crushing sizes for low-grade ores processing Ore macro texture characterization and liberation assessment. Minerals Engineering. 2020, vol. 147, 106156. mineng.2019.106156.

12. Robben C., Condori P., Pinto A., Machaca R., Takala A. X-ray-transmission based ore sorting at the San Rafael tin mine. Minerals Engineering. 2020, vol. 145, 105870. DOI: 10.1016/j.mineng.2019.105870.

13. Shepeta E. D., Samatova L. A., Voronova O. V. Promising trends in development of technologies for tungsten-containing ore and waste processing. Gornyy zhurnal [Mining Journal]. 2018, no. 10, pp. 67–71. [In Russ]. DOI: 10.17580/gzh.2018.10.13.

14. Shemyakin V. S., Skopov S. V., Man’kovskiy R. V., Krasil’nikov P. A., Mamonov R. S. Preliminary processing of quartz raw materials. Izvestiya vuzov. Gornyy zhurnal [Proceedings of higher schools. Mining Journal]. 2016, no. 8, pp. 74–79. [In Russ].

15. Bellusci N., Taylor P. R., Spiller D. E., Braman V. Coarse Beneficiation of Trona Ore by Sensor-Based Sorting. Mining, Metallurgy & Exploration. 2022, vol. 39, pp. 2179–2185.

16. Chelgani S. C., Neisiani A. Asimi. Dry Mineral Processing. Springer Nature Switzerland AG 2022, corrected publication 2023.−3-030−93750−8_7.

17. Tsypin E. F., Ovchinnikova T. Yu., Efremova T. A. Efficiency of X-ray radiometric separation in preliminary concentration of ore. MIAB. Mining Inf. Anal. Bull. 2020, no. 3−1, pp. 431–442. DOI: 10.25018/0236-1493-2020-31−0-431−442.

18. Bocharov V. A., Ignatkina V. A. Mineral processing technology, vol. 1. Moscow, Ruda i metally, 2007, 952 p. [In Russ].

19. Pelevin A. E. Increasing the efficiency of iron ore raw materials beneficiation by separation in an increased magnetic field. Chernye metally. 2022, no. 1, рр. 31–36. DOI: 10.17580/chm.2022.01.04.

20. Pelevin A. E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Journal of Mining Institute. 2022, vol. 256, pp. 579–592. [In Russ]. DOI: 10.31897/PMI.2022.61.

21. Gleeson D. Preceding processing. International Mining. March, 2019, pp. 82–87.

22. Fedorov Yu. O., Kulikov V. I., Dementiev V. E., Voiloshnikov G. I. Preconcentration of ores as a major activity of JSC IRGIREDMET. IMPC 2018−29th International Mineral Processing Congress. 2019, pp. 967–978.

23. Tereshchenko S. V., Pavlishina D. N. X-ray luminescence separation of low-grade apatite ores. MIAB. Mining Inf. Anal. Bull. 2017, no. 11, pp. 130–137. DOI: 10.25018/02361493-2017-11−0-130−137.

24. RF Patent No. 2326738. The method of thermographic lump separation of raw materials (options) and the device for its implementation (options) / authors: V. M. Voloshin, V. Yu. Zubkevich. Application. 03.06.2004. Publ. 20.06.2008. [In Russ].

25. RF Patent No. RU 2546702 C1. Method of separation of diamond-containing mixtures of minerals / authors: P. P. Sharin, M. P. Lebedev, R. G. Nogovitsyn, A. M. Timofeev. Application number: 2014112683/03. Registration date: 01.04.2014. Date of publication: 10.04.2015. [In Russ].

26. Ryabkin V. K., Litvintsev E. G., Tikhvinskii A. V., Korpenko I. A., Pichugin A. N., Kobzev A. S. Polychrome photometric separation of gold bearing ores. Gornyi Zhurnal [Mining Journal]. 2007, no. 12, pp. 88–92. [In Russ].

27. Tsypin E. F., Nikiforov D. V. The ultimate dressability and the possibilities of its formation. Izvestiya Vysshikh Uchebnykh Zavedenii, Gornyi Zhurnal. 2001, no. 4−5, pp. 21–133. [In Russ].

28. Ovchinnikova T. Yu., Tsypin E. F., Efremova T. A., Arinov K .N. Correlation of the surface and volume component contents in lumps with different mineralization. MIAB. Mining Inf. Anal. Bull. 2022, no. 11−1, pp. 139−153. [In Russ]. DOI: 10.25018/0236_1493_2022_111_0_139. 

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.