Back to search

S-model of ore purification in a thickener

The article is devoted to the development of a mathematical model and the structure of the blocks simulating the technological process of pulp sedimentation in a thickener. The obtained model results from a theoretical description of the sedimentation process based on the known laws of free motion of spheroid fine ore grains, which is crucial for designing and adjusting automatic process control systems. Considering the geometric dimensions of the thickener and the fractional composition of the pulp, it becomes possible to study the thickener as an integral part of the automatic control system. The developed mathematical model makes use of the Stokes’s law which determines the resistance force F acting on a solid sphere when it slowly moves through unlimited viscous fluid. This makes it possible to obtain the differential equation of the process using Laplace images, the transition curve accurately approximated by the equation for the aperiodic link of automatic control. A theoretical description of the technological process thickening serves as a basis for obtaining an equation for the time change in a flow path of an ore particle. The integration of the equation for the change in a path results in accurate approximation of the mathematical sedimentation model by a first-order aperiodic link, which is expected to be the basis for the further development of an automatic sedimentation process control system.

Keywords: control object, S-model, sedimentation, thickening, Reynolds number, movement of a single grain, Laplace image, fraction.
For citation:

Leonov R. E., Sosnovskaya D. V. S-model of ore purification in a thickener. MIAB. Mining Inf. Anal. Bull. 2022;(11-1):190—198. [In Russ]. DOI: 10.25018/0236_1493_2022_111_0_190.

Acknowledgements:
Issue number: 11
Year: 2022
Page number: 190-198
ISBN: 0236-1493
UDK: 622.7:681.5
DOI: 10.25018/0236_1493_2022_111_0_190
Article receipt date: 16.06.2022
Date of review receipt: 14.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

Leonov R. E.1, Cand. Sci. (Eng.), Associate Professor, Professor of the Department of Automation and Computer — Integrated Technologies, ORCID ID: 0000-0002-2531-8336, lprep2011@mail.ru;
Sosnovskaya D. V., Master’s Degree Student majoring in Automation and Control of Technological Processes at Hazardous Production Facilities, Department of Automation and Computer — Integrated Technologies, ORCID ID: 0000-0002-6707-080X, daria.sosnovskaya.1999@gmail.com;
1 Federal State Budgetary Institution of Higher Education «Ural State Mining University» (FSBI HO «USMU»), 30 Kuibyshev str., Yekaterinburg, Russia, 620144.

 

For contacts:

Leonov R. E., lprep2011@mail.ru.

Bibliography:

1. Dmitriev A. N., Vitkina G. Y., Fishman A. Y., Sapozhnikova T. V., Shunyaev K. Y., Petukhov R. V., Kornilkov S. V., Pelevin A. E. The characteristic of ores and concentrates of the open society «EVRAZ KGOK». Advanced Materials Research. 2013. Vol. 834−836. pp. 364−369.

2. Nagaraj D. R. Minerals Recovery and Processing. In: Kirk-Othmer Encyclopedia of Chemical Technology. Hoboken: John Wiley & Sons, Inc., 2005. pp. 2−10. DOI: 10.1002/0 471238961.1309140514010701.

3. Sharikov Yu. V., Nikolaev A. N., Kravchuk A. A. Influence of stabilization of the final density of pulp thickening on the quality of the concentrate//Metallurg. 2016. no. 2. pp. 85−88. [In Russ].

4. Matveev I. A., Matveev A. I., Grigoriev Yu. M., Eremeeva N. G. Experimental and theoretical study of the movement of particles in a water stream. MIAB. Mining Inf. Anal. Bull. 2018. no. 11. pp. 171−177. DOI: 10.25018/0236-1493-2018-11−0-171−177. [In Russ].

5. Divyamaan W., Prashant G., VedPrakash M. Chapter 7 Liquid–Solid Processes. In: Multiphase Flows for Process Industries: Fundamentals and Applications, Volume 2. 2022. pp. 359−475. DOI: 10.1002/9783527812066.

6. Leonov R. E., Sosnovskaya D. V. Sedimentation of ore particles in the pulp: Intern. scientific-practical. conf. (Ekaterinburg, April 11, 2022). Yekaterinburg: URSMU. 2022. pp. 445−446. [In Russ].

7. Bolotayeva II Research and development of an automated control system for the process of pulp thickening in metallurgy: author. dis. cand. tech. Sciences. SKGMI (GTU). 2006. 23 p. [In Russ].

8. Pismensky A. V. Method of automatic control of the processes of thickening of sludge waters and clarification of flotation wastes//East European Journal of Advanced Technologies. 2010. no. 6. pp. 38−43. [In Russ].

9. Leonov R. E. On the justification of models of some apparatuses of concentrating plants when creating automatic control systems. Izvestiya vuzov. Gornyi zhurnal. 2019. no. 1. pp. 119−126. DOI: 10.21440/0536-1028-2019-1-119−126. [In Russ].

10. Kozin, V. Z., Morozov, Yu. P., Komlev, A. S., Volkov, P. S., Bekchurina, E. A. Systems of sampling and process control of mineral dressing. IMPC 2018 29th International Mineral Processing Congress. 2019. pp. 61−69.

11. Kozin, V. Z., Vodovozov, K. A. Factors causing positive product imbalance at oredressing plants//Obogashchenie Rud. 2013. no. 2. pp. 27−31. DOI: 10.17580/or.2013.02.05 [In Russ].

12. Kozin, V. Z., Morozov, Yu.P., Komlev, A. S., Falkovich, E. S. Equipment and technology for sample taking and preparation at processing plants. Gornyi Zhurnal. 2015. no. 8. pp. 76−81. DOI: 10.17580/gzh.2015.08.16 [In Russ].

13. Kozin, V. Z., Komlev, A. S., Vodovozov, K. A. Errors in determining yields and recoveries in process balances of concentrating plants. Obogashchenie Rud. 2018. no. 3. pp. 44−50. DOI: 10.17580/or.2018.03.08 [In Russ].

14. Kozin, V. Z., Vodovozov, K. A. Hidden excesses and losses of valuable components at ore-dressing facilities. Obogashchenie Rud. 2013. No.1. pp. 37−39. [In Russ].

15. Kovkova T. M. Improving the process of tailing pulp thickening//Enrichment of ore. 2006. no. 3. pp. 54−55. [In Russ].

16. Gudoshnikov A. V. The use of an intelligent unit to improve the efficiency of the thickening process. Bulletin of modern research. 2017. no. 14. pp. 191−193. [In Russ].

17. Fomichea S. G., Galkov A. I. Simulation model as a means of solving the problem of deterioration of indicators of the process of thickening of pulp materials//CULTURE. SCIENCE. PRODUCTION. 2019. no. 3. pp. 64−71. [In Russ].

18. Ozgur Akkoyun, Nicola Careddu. Mine simulation for educational purposes: A case study. Computer Applications in Engineering Education. 2015. no. 23(2). pp. 286–293.

19. Leonov R. E., Patrakov S. S. Mathematical model of agitator for sulfuric-acid zinc leaching as a control object. MIAB. Mining Inf. Anal. Bull. 2021;(11−1):366–373. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_366.

20. Leonov R. E. Control objects with variable transport delay. Izvestiya vuzov. Gornyi zhurnal. 2021. no. 1, pp. 122–130. DOI: 10.21440/0536-1028-2021-1-122−130.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.