Back to search

Improved approach to determination of relative gas content in operating spaces in mines at the Upper Kama potassium and magnesium salt deposit

The article proposes a new approach to determining gas content in operating spaces in mines at the Upper Kama deposit of potassium and magnesium salts. The approach takes into account various effects of process flows and equipment in underground mineral mining. It is proposed to determine the gas emission irregularity ratio by a few ways, including the methods of statistical processing. In-situ measurements are performed in potassium mine roadways to determine the irregularity value of gas emission from rock mass. The relative gas contents are determined during gas surveying and are calculated using the existing techniques and the new approach. The applicability of the proposed approach is estimated as a case-study of a real mine. The main concept of the new approach to the relative gas content calculation is the reduction of the possible error in sampling and subsequent calculation of gas content using the time-average concentration and gas emission rate under conditions of cyclic operation of cutting–loading machine systems. The new approach can improve accuracy in determination of the required amount of air to ventilate operating spaces in mines of the Upper Kama potassium and magnesium salt deposit.

Keywords: mine, gas conditions, mine air, mine ventilation, sampling, relative gas content, gas concentration, gas emission irregularity, gas surveying, operating space, underground air, gas composition, relative gas content formula, methane concentration, hydrogen sulfide concentration.
For citation:

Starikov A. N., Maltsev S. V., Isaevich A. G. Improved approach to determination of relative gas content in operating spaces in mines at the Upper Kama potassium and magnesium salt deposit. MIAB. Mining Inf. Anal. Bull. 2023;(9):99-113. [In Russ]. DOI: 10. 25018/0236_1493_2023_9_0_99.

Acknowledgements:

The study was supported by the Ministry of Science and Higher Education of the Russian Federation under State Contract No. 075-03-2021-374 dated 29 December 2020, Registration Number 122012000396-6.

Issue number: 9
Year: 2023
Page number: 99-113
ISBN: 0236-1493
UDK: 622.41
DOI: 10.25018/0236_1493_2023_9_0_99
Article receipt date: 28.10.2022
Date of review receipt: 27.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

A.N. Starikov1, Junior Researcher, e-mail: starikov4488@mail.ru,
S.V. Maltsev1, Cand. Sci. (Eng.), Head of Mine Ventilation Sector, e-mail: stasmalcev32@gmail.com,
A.G. Isaevich1, Cand. Sci. (Eng.), Senior Researcher, e-mail: aero_alex@mail.ru,
1 Mining Institute of Ural Branch of Russian Academy of Sciences, 614000, Perm, Russia.

 

For contacts:

A.N. Starikov, e-mail: starikov4488@mail.ru.

Bibliography:

1. Isaevich A. G., Starikov A. N., Maltsev S. V. Improvement of air sampling method to determine relative concentration of combustion gases in mine air. MIAB. Mining Inf. Anal. Bull. 2021, no. 4, pp. 143—153. [In Russ]. DOI: 10.25018/0236_1493_2021_4_0_143.

2. Andreiko S. S., Ivanov O. V., Lyalina T. A., Nesterov E. A. Gas content in terms of free gases of the rocks of the sylvinite and sylvinite-carnallite zones of the Verkhnekamsk deposit. Russian Mining Industry. 2021, no. 4, pp. 125—133. [In Russ]. DOI: 10.30686/1609-9192-20214-125-133.

3. Butuzov D. M. Component composition of free gases of hydrochloric rocks of the Verkhnekamsk potash deposit. Problemy razrabotki mestorozhdeniy uglevodorodnykh i rudnykh poleznykh iskopaemykh. 2016, no. 1, pp. 238—240. [In Russ].

4. Levin L. Yu., Isaevich A. G., Semin M. A., Gazizullin R. R. Investigation of the dynamics of the dust-air mixture during the ventilation of a dead-end working during the operation of combine complexes. Gornyi Zhurnal. 2015, no. 1, pp. 72—75. [In Russ]. DOI: 10.17580/ gzh.2015.01.13.

5. Zaitsev A. V., Trushkova N. A. Recirculating ventilation in the presence of gas emission source and internal air leaks in operating space. MIAB. Mining Inf. Anal. Bull. 2022, no. 3, pp. 34—46. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_34.

6. Kholod N., Evans M., Pilcher R. C., Roshchanka V., Ruiz F., Coté M., Collings R. Global methane emissions from coal mining to continue growing even with declining coal production. Journal of Cleaner Production. 2020, vol. 256, article 120489. DOI: 10.1016/j. jclepro.2020.120489.

7. Wanting Song, Jianwei Cheng, Wenhe Wang, Yi Qin, Zui Wang, Marek Borowski, Yue Wang, Purushotham Tukkaraja Underground mine gas explosion accidents and prevention techniques–an overview. Archives of Mining Sciences. 2021, vol. 66, no. 2. DOI: 10.24425/ams. 2021.137463.

8. Fakai Wang, Xusheng Zhao, Yunpei Liang, Xuelong Li, Yulong Chen Calculation model and rapid estimation method for coal seam gas content. Processes. 2018, vol. 6, no. 11, article 223. DOI: 10.3390/pr6110223.

9. Chaikovskiy I. I. On the nature of a large anticline fold at the Verkhnekamsk salt deposit, its geomechanical and gas-geochemical zoning. Proceedings of Kazan university. Natural sciences series. 2021, vol. 163, no. 3, pp. 490—499. [In Russ]. DOI: 10.26907/2542-064X_2021_3.490-499.

10. Bobrov D. A. Information and reference system of gas-dynamic phenomena and gas content for the conditions of mine fields of mines of PJSC Uralkali. Problems of Subsoil Use. 2016, no. 2(9), pp. 12—18. [In Russ]. DOI: 10.18454/2313-1586.2016.02.012.

11. Sidorenko A. A., Sirenko Y. G., Sidorenko S. A. Influence of face advance rate on geomechanical and gas-dynamic processes in longwalls in gassy mines. Eurasian Mining. 2018, vol. 1, pp. 3—8. DOI: 10.17580/em.2018.01.01.

12. Zagvozkin I. V., Lesov G. P., Yanovich D. M. Ensuring the safety and trouble-free operation of combine complexes at the mines of JSC Uralkali. Occupational Safety in Industry. 2013, no. 9, pp. 46—49. [In Russ].

13. Laptev V. N., Isaevich A. G., Norina N. V., Yгzhanin A. S., Dudina E. N., Kovin K. A., Mal'tsev S. V., Trushkova N. A., Gazizullin R. R., Starikov A. N. Patent RU 157165. 30.10.15. [In Russ].

14. Li M., Dubaniewicz T., Dougherty H., Addis J. Evaluation of fiber optic methane sensor using a smoke chamber. International Journal of Mining Science and Technology. 2018, vol. 28, no. 6, pp. 969—974 DOI: 10.1016/j.ijmst.2018.05.010.

15. Zimmer M., Strauch B., Zirkler A., Niedermann S., Vieth-Hillebrand A. Origin and evolution of gas in salt beds of a potash mine. Advances in Geosciences. 2020, vol. 54, pp. 15—21. DOI: 10.5194/adgeo-54-15-2020.

16. Grgic D., Al Sahyouni F., Golfier F., Moumni M., Schoumacker L. Evolution of gas permeability of rock salt under different loading conditions and implications on the underground hydrogen storage in salt caverns. Rock Mechanics and Rock Engineering. 2022, vol. 55, no. 2, pp. 691—714. DOI: 10.1007/s00603-021-02681-y.

17. Nikolaev A. V. Evaluation of the adequacy of mathematical models and the dependence of the distribution of the gas-air mixture within the blind working of a potash mine. Ugol'. 2022, no. 10 (1159), pp. 60—65. [In Russ]. DOI: 10.18796/0041-5790-2022-10-60-65.

18. Dong J., Cheng L. Evaluation method of coal mine mode gas control mode based on analytic hierarchy process. Chemical Engineering Transactions. 2018, vol. 71, pp. 319—324. DOI: 10.3303/CET1871054.

19. Ang Liua, Shimin Liua, Gang Wang, Derek Elswortha Predicting fugitive gas emissions from gob-to-face in longwall coal mines: coupled analytical and numerical modeling. International Journal of Heat and Mass Transfer. 2020, vol. 15, article 119392. DOI: 10.1016/j. ijheatmasstransfer.2020.119392.

20. Kaledina N. O., Chechel K. N. Analysis of the gas balance of the extraction site in ensuring aerological safety. MIAB. Mining Inf. Anal. Bull. 2021, no. 10-1, pp. 5—16. [In Russ]. DOI: 10.25018/0236_1493_2021_101_0_5.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.