Back to search

Theoretical justification of pneumatic separation for copper sulfide ore enrichment

Gravity methods of enrichment are the most common methods of mineral processing. Until the twentieth century A. D., gravity methods were the main methods of mineral processing. In practice, dry gravity methods are used as preliminary, basic, and sometimes the only methods for enrichment of some kinds of minerals. In these cases, the result of enrichment is a finished commercial product. For example, enrichment of ores of chrysotile-asbestos, power coals, construction materials, nonmetallic minerals. At the present time there are the following machines: pneumatic stripping machines are intended for coal enrichment in the air environment and in some cases can be used for ore enrichment, as well as the air stripping machine intended for asbestos ore enrichment refers to the known methods with suction of asbestos fiber released on the ore layer surface. Shelf air separation refers to the air enrichment of minerals and is intended for the separation of fine-grained bulk mixtures depending on the density, as well as the shape and size of the separated grains. The efficiency of pneumatic separation of bulk solids is affected by differences depending on the density, size and shape of the particles and in the velocity of whirling; formation of eddy. air flows in the separation zone; collisions of particles with each other and with the walls of the device; in the chamber of the device uneven distribution of velocities of air flows.

Keywords: dry pretreatment, gravity methods, pneumatic separation, copper ore, dry enrichment methods, enrichment of small size classes, new processes and apparatuses, enrichment technology, technological indicators. mineral dressing.
For citation:

Zavyalov S. S., Mamonov R. S. Theoretical justification of pneumatic separation for copper sulfide ore enrichment. MIAB. Mining Inf. Anal. Bull. 2022;(11-1):199—209. [In Russ]. DOI: 10.25018/0236_1493_2022_111_0_199.

Acknowledgements:

The study was prepared in accordance with the state assignment for research for the Ural State Mining University No. 075-03-2022-401 dated 12.01.2022.

Issue number: 11
Year: 2022
Page number: 199-209
ISBN: 0236-1493
UDK: 622.272
DOI: 10.25018/0236_1493_2022_111_0_199
Article receipt date: 16.06.2022
Date of review receipt: 14.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

Zavyalov S. S.1, Engineer-researcher, e-mail: Sergey.Zavialov@m.ursmu.ru, ORCID ID: 0000-0002-2947-0458;
Mamonov R. S.1, Engineer, Department mineral dressing, e-mail: Mamonoff_npa@mail.ru, ORCID ID: 0000-0002-9371-1762;
1 Federal State Budgetary Educational Institution of Higher Professional Education «Ural State Mining University», 30 Kuibyshev St., Ekaterinburg, Russia, 620144.

 

For contacts:

Zavyalov S. S., е-mail: Sergey.Zavialov@m.ursmu.ru.

Bibliography:

1. Serhii Kharchenko, Yurii Borshch, Stepan Kovalyshyn, Mykhailo Piven, Magomed Abduev, Anna Miernik, Ernest Popardowski, Paweł Kiełbasa. Modeling of Aerodynamic Separation of Preliminarily Stratified Grain Mixture in Vertical Pneumatic Separation Ducts Appl. Sci. 2021, 11(10), 4383; https://doi.org/10.3390/app11104383.

2. Chalavadi G., Das A. Study of the mechanism of fine coal beneficiation in air table. Fuel. 2015, 154:207–216. https://doi.org/10.1016/j.fuel.2015.03.063.

3. Fu Z., Zhu J., Barghi S., Zhao Y., Luo Z., Duan Ch. Dry coal beneficiation by the semiindustrial air dense medium fluidized bed with binary mixtures of magnetite and fine coal particles. Fuel. 2019, 243:509–518. https://doi.org/10.1016/j.fuel.2019.01.140.

4. Mijał W., Tora B. Development of dry coal gravity separation techniques. IOP Conf Ser Mater Sci Eng. 2018, 427(1):012003.

5. Sarkar B., Das A., Mehrotra S. P. Study of separation features in floatex density separator for cleaning fine coal. Int J Miner Process. 2008, 86(1–4):40–49. https://doi. org/10.1016/j.minpro.2007.10.002.

6. Yang Y., Ge L., He Y., Xie W., Ge Z. Mechanism and fine coal beneficiation of a pulsating airflow classifier. Int J Coal Prep Util. 2019, 39(1):20–32. https://doi.org/10.1080/19392699.2017.1288622.

7. Morozov Y. P., Zavyalov S. S., Dzhuraev H. R. Study of separation of sulfide ore by the rate of whirling in an upward flow of air. Scientific and Technical Conference “Innovative technologies of mineral and technogenic raw materials enrichment”, in the framework of the VII Urals mining and industrial forum Ekaterinburg, 17−19 October 2017. С. 192 194.

8. Merinov N. F. Gravitational methods of enrichment. Lecture notes. Yekaterinburg 2005. 204 с. [In Russ].

9. Zavyalov S. S., Mamonov R. S. Mixed-type dry pretreatment technology for goldbearing ore. MIAB. Mining Inf. Anal. Bull. 2021;(11−1):338—345. [In Russ]. DOI: 10. 25018/0236_1493_2021_111_0_338.

10. Ovchinnikova T. Yu., Efremova T. A., Tsypin E. F. Lower size grade limits in ore pretreatment using X-ray fluorescent separation. MIAB. Mining Inf. Anal. Bull. 2021;(11−1):328—337. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_328.

11. Adov V. A., Morozov V. V., Samdan Ganbat. Research and modeling of the aerodynamic regime of the process of pneumatic separation of coal. Mining industry in the 21st century: challenges and reality “Collection of abstracts of the reports of the international scientific and practical conference dedicated to the 60th anniversary of the Yakutniproalmaz Institute of AK ALROSA”. Mirny, 2021 p. 140–141. [In Russ].

12. Merinov N. F. Features of pneumatic methods of enrichment, Izvestia of universities. Mining Journal. 2011. no. 4. 2011. С. 99–109. [In Russ].

13. Bauman A. V., Stepanenko A. I., Stepanenko A. A. Practical results and prospects of dry beneficiation of ores and non-metallic materials by pneumatic separation. Mining Journal, 2020, no. 3. pp. 40−44. DOI: 10.17580/gzh.2020.03.07. [In Russ].

14. Patent of the Russian Federation № 2309804 C1 IPC B07B4/00. Method of dry enrichment of poor placer gold-bearing ore : № 2006106577/03 : application. 02.03.2006 : publ. 10.11.2007 / B. A. Adamovich, V. I. Dudov, A. G. Derbichev [In Russ].

15. Lebedev I. F. Beneficiation of minerals using pneumoseparation apparatuses. International Scientific Research Journal. 2019. no. 4−1 (82). pp. 65–68. DOI 10.23670/ IRJ.2019.82.4.012. [In Russ].

16. Lebedev I. F. Technological studies of lead ores by pneumoseparation. Proceedings of the XXVII International Scientific and Technical Conference. “Scientific bases and practice of processing of ores and technogenic raw materials”. 07−08 April 2022 Ekaterinburg 2018 pp. 228–233.

17. Kamil Stan´czyk, Andrzej Bajerski, Marian J. Łaczny. Negative-pressure pneumatic separator: a new solution for hardcoal. Beneficiation Int J Coal Sci Technol. 2021. 8(1):103– 123. https://doi.org/10.1007/s40789−020−00345-w.

18. Zavyalov S. S., Safonova M. S. Study of dry gravity methods of preliminary enrichment of sulfide ores. Proceedings of XXIII International Scientific and Technical Conference. “Scientific bases and practice of processing of ores and technogenic raw materials” April 10−13, 2018. Ekaterinburg. 2018 pp. 398–401. [In Russ].

19. Xuehu Zhong, Wei Liu, Junwei Han, Fen Jiao, Hailing Zhu, Wenqing Qin. Pneumatic separation for crushed spent lithium-ion batteries Waste Management. 2020. 118(37):331−340 DOI: 10.1016/j.wasman.2020.08.053.

20. Morozov, Zavyalov S. S., Volkov P. S., Dzhuraev H. R. Study of dry gravity concentration of sulphide ore of Shatyrkul deposit. Materials of XXII International Scientific and Technical Conference. “Scientific bases and practice of processing of ores and technogenic raw materials”, April 19−20, 2017. Yekaterinburg. 2017. pp. 151–153. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.