Back to search

Correlation of the surface and volume component contents in lumps with different mineralization

Preliminary ore dressing is an actively developing direction in the minerals processing. The application of information (sensor-based) sorting methods involves the use of both volume and surface signs of separation. When using surface signs of separation, it is important how the component surface content estimated by them is interconnected with the volume content and, ultimately, with the mass content. In the work, on the example of artificial models with different mineralization of the component, the correlation between the surface and volume contents of the component was studied. The surface content was estimated using the X-ray fluorescence method by the magnitude of the spectral ratio. Six types of models are considered, of which two were covered with a layer of homogeneous material representing a gangue or mineral phase, and four others represented various types of mineralization with different values of the component surface content. Formulas were derived to estimate the surface and volume content and mass content for the studied models. Graphical dependences of the surface content and the average value of the spectral ratio on the volume content and mass content were obtained, which showed the presence of an edge effect for models with different mineralization. The edge effect can have a negative effect when using a surface separation feature when using X-ray fluorescence separation as a pre-concentration method, since there is a possibility of incorrect identification of a piece depending on its position relative to the measuring system.

Keywords: preliminary ore dressing, X-ray fluorescence separation (XRF); component surface content; component volume content; mass content; mineral aggregates; mineralization models; spectral ratio; edge effect.
For citation:

Ovchinnikova T. Yu., Tsypin E. F., Efremova T. A., Arinov K .N. Correlation of the surface and volume component contents in lumps with different mineralization. MIAB. Mining Inf. Anal. Bull. 2022;(11-1):140—154. [In Russ]. DOI: 10.25018/0236_1493_2022_111_0_140.

Acknowledgements:
Issue number: 11
Year: 2022
Page number: 140-154
ISBN: 0236-1493
UDK: 622.725 : 535.3
DOI: 10.25018/0236_1493_2022_111_0_140
Article receipt date: 16.06.2022
Date of review receipt: 14.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.10.2022
About authors:

Ovchinnikova T. Yu., Cand. Sci. (Eng.), Associate Professor of the Mineral Dressing Department, ORCID iD 0000-0001-7000-9295, Federal State Budgetary Educational Institution of Higher Education “Ural State Mining University”, 30 Kuibyshev str., Yekaterinburg, Russia, 620144, tatyana.ovchinnikova@m.ursmu.ru;
Tsypin E. F., Dr. Sci. (Eng.), Professor, Professor of the Mineral Dressing Department, ORCID iD 0000-0003-3921-2695, Federal State Budgetary Educational Institution of Higher Education “Ural State Mining University”, 30 Kuibyshev str., Yekaterinburg, Russia, 620144, tsipin.e@mail.ru;
Efremova T. A., Researcher of the Laboratory of Mineral Dressing of Non-ferrous Metal Ores and Technogenic Raw Materials, Mineral Dressing Department of JSC “Uralmekhanobr”, 87 Khokhryakova str., Yekaterinburg, Russia, 620144, efremova_ta@umbr.ru;
Arinov K. N., Graduate Student, Federal State Budgetary Educational Institution of Higher Education “Ural State Mining University”, 30 Kuibyshev str., Yekaterinburg, Russia, 620144.

 

For contacts:

Ovchinnikova T. Yu., e-mail: tatyana.ovchinnikova@m.ursmu.ru.

Bibliography:

1. Tsypin E. F. Preliminary concentration. Izvestiya Vysshikh Uchebnykh Zavedenii, Gornyi Zhurnal. 2001.no. 4−5. pp. 82−104. [In Russ]

2. Tsypin E. F. Mineral dressing in ore processing stages. Ekaterinburg, UGGU, 2015. 303 p. [In Russ]

3. Fedorov Yu. O., Katser I. U., Korenev O. V., Korotkevich V. A., Tsoy V. P., Kovalev P. I., Fedorov M. Yu., Popovskiy N. S. Experience and practice of X-ray radiometric separation of ores. Proceedings of higher schools. Gornyi Zhurnal [Mining Journal], 2005, no. 5, pp. 21–37. [In Russ]

4. Tereshchenko S. V., Shibaeva D. N. Ore quality improvement by pre-concentration: Theory and practice. Gornyi Zhurnal [Mining Journal], 2020. no. 9. pp. 60−65. [In Russ] DOI 10.17580/gzh.2020.09.08.

5. Tsypin E. F., Ovchinnikova T.Yu., Efremova T. A. Effciency of X-ray radiometric separation in preliminary concentration of ore. MIAB. Mining Inf. Anal. Bull. 2020;(3−1):431−442. [In Russ]. DOI: 10.25018/0236-1493-2020-31−0-431−442.

6. Maksimov I. I. The XXVII International Congress on Mineral Dressing (Part 1). Obogashcheniye Rud [Mineral Dressing], 2015, no. 3, pp. 3–11. DOI: 10.17580/ or.2015.03.01. [In Russ]

7. Maksimov I. I. Baranov V. F., Bogdanovich А. V., Kibirev V. I. The XXVII International Congress on Mineral Dressing (Part 2), Obogashcheniye Rud [Mineral Dressing], 2015, no. 6, pp. 50–58. DOI: 10.17580/or.2015.06.10. [In Russ]

8. Gleeson D. Preceding processing. International Mining. March, 2019. pp. 82−87.

9. Robben C., Wotruba H. Sensor-based ore sorting technology in mining Past, present and future. Minerals. 2019. Vol. 9, Iss. 9. DOI: 10.3390/min9090523.

10. Wotruba H., Robben C. Sensor-based ore sorting in 2020 at Automatisierungstechnik, vol. 68, no. 4, 2020, pp. 231−238. https://doi.org/10.1515/auto-2019−0060.

11. Kolacz J. New high definition X-ray sorting system based on X-MINE detection technology. IOP Conference Series: Materials Science and Engineering. Vol. 641. Iss. 1, 19 November 2019. DOI 10.1088/1757−899X/641/1/012028.

12. Veras M., Young A., Sampaio C., Petter C. A mining breakthrough: Preconcentration by sensor-based sorting. Mining Engineering, Vol. 68, Iss. 3, March 2016, pp. 38−42.

13. Sotoudeh F., Nehring M., Kizil M. S., Knights P. Integrated underground mining and pre-concentration systems; a critical review of technical concepts and developments. International Journal of Mining, Reclamation and Environment. 2020. Vol. 35, Iss. 3. pp. 153–182. DOI 10.1080/17480930.2020.1782573.

14. Burdakova E. A., Bragin V. I., Usmanova N. F., Vashlaev A. O., D’yachenko L. E., Lesnikova L. S., Fertikov A. I. Radiometric separation in grinding circuit of copper–nickel ore processing, Journal of Mining Science. 2019, Vol. 55. Iss. 5. pp. 824−831, DOI 10.1134/ S1062739119056197.

15. Rassulov V. A., Nerushchenko E. V. Laser-photometric lump separation of goldbearing ore. Obogashcheniye Rud [Mineral Dressing], 2020. no. 5. pp. 16–22. [In Russ] DOI: 10.17580/or.2020.05.03.

16. Zabolotsky A. I., Nerushchenko E. V., Results of research on the applicability of preenrichment methods for gold ores from Highland Gold mining ltd deposits. Ratsional’noye osvoyeniye nedr [Rational development of subsoil] 2020. no. 4, pp. 64−70. [In Russ] DOI: DOI: 10.26121/RON.2020.57.68.008.

17. Tsypin E. F., Entaltsev E. V., Shemyakin V. S., Skopov S. V., Fedorov Y. O., Pestov V. V. Enrichment by X-ray radiometric separation. Steel in translation. 2009. no. 6. P. 521−524.

18. Rapolti L., Rodica H., Grindei L., Grindei L., Purcar M., Dragan F., Copîndean R., Reman R. Experimental stand for sorting components dismantled from printed circuit boards. Minerals. Vol. 11, Iss.11 November 2021. DOI 10.3390/min11111292.

19. Sampaio C. H., Sampaio C. H., Ambrós W. M., Cazacliu B. G., Moncunill J. O., Veras M. M., Miltzarek G. L., Silva L. F. O., Kuerten A. S., Liendo M. A. Construction and demolition waste recycling through conventional jig, air jig, and sensor-based sorting: A comparison. Minerals. Vol. 11, Iss. 8 August 2021. DOI 10.3390/min11080904

20. Tatarnikov A. P., Asonova N. I., Balkina I. G., Naumov M. E., Konovalov G. N., Voevodin I. V. Modern technologies and equipment for radiometric concentration of uranium ores. Gornyi Zhurnal [Mining Journal], 2007, no. 2, pp. 85−87. [In Russ]

21. Ryabkin V. K., Litvintsev E. G., Tikhvinskii A. V., Korpenko I. A., Pichugin A. N., Kobzev A. S. Polychrome photometric separation of gold bearing ores. Gornyi Zhurnal [Mining Journal], 2007, no. 12. pp. 88−92. [In Russ].

22. Yakovlev V. N., Makalin I. A., Ivanov F. V. Improvement of diamond recovery and selectivity of the X-ray luminescence separation in the course of processing diamond bearing ores. Gornoye oborudovaniye i elektromekhanika [Mining equipment and electrical engineering], 2009, no. 6. pp. 50−53. [In Russ]

23. Robben C., Condori P., Pinto A., Machaca R., Takala A. X-ray-transmission based ore sorting at the San Rafael tin mine. Minerals Engineering. Vol. 145 1 January 2020. DOI 10.1016/j.mineng.2019.105870.

24. Li G., Klein B., Sun C., Kou J. Investigation on influential factors of bulk ore sortability based on fractal modelling. Minerals Engineering. Vol. 177. February 2022. DOI 10.1016/j.mineng.2021.107362.

25. Li G., Klein B., He C., Yan Z., Sun C., Kou J. Development of a bulk ore sorting model for ore sortability assessment Part II: Model validation and optimization. Minerals Engineering. Vol. 172. 1 October 2021. DOI 10.1016/j.mineng.2021.107143.

26. Li G., Klein B., Sun C., Kou J. Lab-scale error analysis on X-ray fluorecence sensing for bulk ore sorting. Minerals Engineering. Vol. 164. 1 April 2021. DOI 10.1016/j. mineng.2021.106812.

27. Li G., Klein B., Sun C., Kou J. Applying Receiver-Operating-Characteristic (ROC) to bulk ore sorting using XRF. Minerals Engineering. Vol. 146. 15 January 2020. DOI 10.1016/j.mineng.2019.106130.

28. Tsypin E. F., Arinov K. N., Ovchinnikova T. Yu., Fractional characteristics of raw materials with surface methods of obtaining information. Izvestiya Vysshikh Uchebnykh Zavedenii, Gornyi Zhurnal. 2011. no. 4. pp. 87−92. [In Russ].

29. Ovchinnikova T. Yu., Efremova T. A., Tsypin E. F. Lower size grade limits in ore pretreatment using X-ray fluorescent separation . MIAB. Mining Inf. Anal. Bull. 2021;(11−1):328— 337. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_328.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.