© И.В. Баклашов, А.А. Скворцов, И.Р. Мукаев, 2011

УДК 69.035

И.В. Баклашов, А.А. Скворцов, И.Р. Мукаев ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ МУЛЬДЫ СДВИЖЕНИЯ ГРУНТОВОГО МАССИВА ПРИ ПОДРАБОТКЕ ЕГО СТРОЯЩИМСЯ ТОННЕЛЕМ

Изложена методика инженерного расчета параметров мульды сдвижения грунтового массива при подработке его строящимся тоннелем. Ключевые слова: тоннель, деформации, грунтовый массив, мульда сдвижения, подработка.

В настоящее время в мегаполисах большое распространение получило подземное строительство транспортных тоннелей большого диаметра и тоннелей небольших размеров, предназначенных для размещения в них различных инженерных коммуникаций. Подземное строительство вызывает появление сдвижений грунтового массива и оказывает негативное воздействие на находящиеся в нем различные инженерные коммуникации и объекты, расположенные на земной поверхности [1].

В условиях активно развивающегося города с многочисленными строительными объектами, как на поверхности, так и в глубине грунтового массива, необходима методика инженерного расчета для оперативного прогнозирования параметров сдвижений грунтового массива (далее мульды сдвижения грунтового массива) с целью принятия своевременных строительных мер защиты того или иного объекта.

Существующие численные методики расчета в совокупности с современными программными комплексами по моделированию различных геомеханических ситуаций позволяют решить эту задачу.

Расчетная схема для вычисления параметров мульды сдвижения в однородном грунтовом массива при подработке его тоннелем различного диаметра *D* с различным строительным зазором и между его обделкой и горной выработкой приведена на рис. 1. Мульда сдвижения ограничивается прямой, соединяющей точку 2 на уровне шелыги выработки на расстоянии A_0 от оси выработки и точку 1 на контуре выработки, а также прямой соединяющей данную точку и точку З на земной поверхности, проходящей под углом б. Граничный угол δ определяет горизонтальные размеры мульды сдвижения и отсчитывается от горизонтальной линии, проведенной на уровне шелыги выработки.

На приведенной выше схеме:

η_{max} и η величины максимального оседания поверхности земли и слоя грунтового массива, содержащего водонесущие трубопроводы;

А и A₀ – соответственно размеры полумульды сдвижения грунтового массива на земной поверхности и на уровне шелыги выработки;

δ – граничный угол;

Рис. 1. Расчетная схема

Н и h – соответственно глубина заложения выработки и глубина заложения водонесущих коммуникаций;

D – диаметр выработки;

 и – строительный зазор между обделкой тоннеля и горной выработкой.

В результате моделирования большого ряда сочетаний заданных параметров построены расчетные выражения:

• размеров полумульды сдвижения на уровне шелыги выработки *A*₀

$$A_0 = \frac{2}{15} \cdot u + 2, 4 \cdot D;$$
(1)

• максимального оседания земной поверхности

$$\eta_{\text{max}} = \frac{\mathbf{u} \cdot \left(\frac{\mathbf{D}}{\mathbf{H}}\right)^{1.2}}{0,42 + \left(\frac{\mathbf{D}}{\mathbf{H}}\right)^{1.2}};$$
(2)

• распределения оседаний земной поверхности в пределах мульды сдвижений, как показано на рисунке 1,

$$\eta(x) = \eta_{\max} \cdot s(z), \qquad (3)$$

$$s(z) = (1 - z^{1,7})^{3,7}$$
, (4)

где s(z) – типовая функция безразмерной координаты $z = \frac{x}{A}$, построенная по результатам моделирования и представленная в аналитическом виде или в виде таблицы; длина полумульды сдвижений *A* из условия определения ее границ x = 0 и x = A

При $s\left(\frac{x}{A}\right) = 0,005$, что соответствует

граничному углу δ;

• распределения наклонов земной поверхности в пределах полу-

$z = \frac{x}{A}$	0	0,05	0,1	0,15	0,2	0,25	0,3
s(z)	1	0,98	0,93	0,86	0,78	0,69	0,6
s'(z)	0	- 0,8	- 1,2	- 1,5	- 1,7	- 1,8	- 1,9
s''(z)	0	- 10,2	- 7,2	- 5,1	- 3,2	- 1,6	- 0,1
$z = \frac{x}{A}$	0,4	0,5	0,6	0,7	0,8	0,9	1
s(z)	0,42	0,26	0,13	0,05	0,02	0,005	0
s'(z)	- 1,7	- 1,4	- 1,0	- 0,6	- 0,2	- 0,1	0
s''(z)	2,3	3,9	4,4	4,0	2,8	1,2	0

266

Рис. 2. Распределение оседаний земной поверхности вдоль мульды сдвижения (линией обозначена кривая, полученная путем геомеханического моделирования, а точки соответствуют распределению оседания полученного с применением (3))

мульды сдвижений

$$i(x) = \frac{\eta_{\max}}{A} \cdot s'(z); \tag{5}$$

 распределения кривизны земной поверхности в пределах полумульды сдвижений

$$k(x) = \frac{\eta_{\max}}{A^2} \cdot s''(z),$$
(6)

где s'(z) и s''(z) – первая и вторая производные типовой функции s(z),

1. Инструкция по наблюдениям за сдвижениями земной поверхности и расположенными на ней объектами при строительстве в Москве подземных сооружений, М.: ИПКОН РАН, 1997. приведенные в таблице, и определяемые выражениями

$$s'(z) = -6,29 \cdot z^{0,7} \cdot (1 - z^{1,7})^{2,7},$$

$$s''(z) = 28,9z^{1,4} (1 - z^{1,7})^{1,7} - (4,4z^{-0,3} (1 - z^{1,7})^{2,7}.$$
(8)

Данные расчетные выражения были применены для вычисления величины оседания земной поверхности, подрабатываемый строящимся кабельным диаметром 3.2 м и глубиной заложения 11 м.

По рис. 2 видно, что результаты, полученные с применением приведенных расчетных выражений, с высокой степенью точности согласуются с результатами моделирования данной геомеханической ситуации.

Приведенные расчетные выражения могут быть использованы для прогнозирования сдвижений подрабатываемых фундаментов зданий и сооружений на земной поверхности [2].

- СПИСОК ЛИТЕРАТУРЫ

2. *СНиП* 2.01.09-91. Здания и сооружения на подрабатываемых территориях и просадочных грунтах.

Коротко об авторах

Баклашов И.В. – профессор, доктор технических наук, Московский государственный горный университет, geomeh62@yandex.ru *Скворцов А.А.* – студент, Московский государственный горный университет, Moscow State Mining University, Russia, ud@msmu.ru *Мукаев И.Р.* – начальник отдела горно-проходческих работ, ЗАО «ИнжЭнергоПроект».