Use of placer gold as mineral carrier in flotation of gold ore

Authors: Евдокимов С. И., Герасименко Т. Е.

It follows from the stability theory of hydrophobic colloids that mostly particles of different size aggregate. Probability of collision of fines with large surface is higher than probability of aggregation of equal size particles. It is found that interaction of particles features selectivity: adhesion numbers reach maximal values when particles attach to bearing surfaces of the same wettability. Based on the laws of aggregation in polydisperse mineral systems, comparatively big particles of gold, for instance, prepared to flotation using collectors, can serve as mineral carriers for finer gold. This comparatively big gold to act as mineral carrier is advised to be extracted from placers, including waste piles. In this case, two problems are solvable. First, the required amount of the mineral carrier of high floatability can be produced. Second, joint processing of natural gold ore and waste material offers an aggregate profit while separate treatment of waste piles is often loss-making. It is shown that flotation with mineral carrier represented by free gold from sand-and-gravel mixture ensures higher gold recovery in concentrate. The increment in extraction of gold takes place owing to reduced loss of fine gold in tailings. The studies into adherence kinetics of particles yield that the cause of aggregation in case of using relatively coarse free gold as mineral carrier is high probability of collision between these coarse particles and gold fines at a shorter time of induction.

Keywords: ore, placer, gold, recovery, gravity, flotation, mineral carriers, adhesion, kinetics.
For citation:

Evdokimov S. I., Gerasimenko T. E. Nazvanie. MIAB. Mining Inf. Anal. Bull. 2020;(2):139151. [In Russ]. DOI: 10.25018/0236-1493-2020-2-0-139-151.

Acknowledgements:
Issue number: 2
Year: 2020
Page number: 139-151
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236-1493-2020-2-0-139-151
Article receipt date: 11.11.2019
Date of review receipt: 19.12.2019
Date of the editorial board′s decision on the article′s publishing: 20.01.2020
About authors:

S.I. Evdokimov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: eva-ser@mail.ru,
T.E. Gerasimenko1, Cand. Sci. (Eng.), Assistant Professor, Head of the Department of Intellectual Property,
1 North Caucasus Mining-and-Metallurgy Institute (State Technological University), 362021, Vladikavkaz, Republic of North Ossetia-Alania, Russia

 

For contacts:

S.I. Evdokimov, e-mail: eva-ser@mail.ru.

Bibliography:

1. Rubinshteyn Yu. B., Filippov Yu. A. Kinetika flotatsii [Flotation kinetics], Moscow, Nedra, 1980, 375 p.
2. Chanturiya V. A. Prospects for sustainable development of the mining industry in Russia. Gornyy zhurnal. 2007, no 2, pp. 2—9.
3. Fuks G. I. On the forces of contact interactions of solid particles in a liquid medium. Uspekhi kolloidnoy khimii: sbornik nauchnykh statey pod red. P. A. Rebindera [Advances in colloidal chemistry, collection of scientific articles, Rebinder P. A. (Ed.)], Moscow, Nauka, 1973, pp. 117—129.
4. Deryagin B. V., Dukhin S. S., Rulev N. N. Mikroflotatsiya: Vodoochistka, obogashchenie [Microflotation: Water treatment, enrichment], Moscow, Khimiya, 1986, 112 p.
5. Tikhonov S. A., Babushkina N. A., Popova R. M. Study of the physical foundations of agglomeration flotation and solid surface flotation as applied to the enrichment of finely dispersed minerals. Teoreticheskie osnovy i kontrol' protsessov flotatsii: sbornik nauchnykh statey, pod red. V. A. Chanturiya [Theoretical foundations and control of flotation processes, collection of scientific articles, Chanturiya V. A. (Ed.)], Moscow, Nauka, 1980, pp. 34—38.
6. Valderrama L., Rubio J. High intensity conditioning and the carrier flotation of gold fine particles. International Journal of Mineral processing, 1998, Vol. 52, Issue 4, pp. 273—285.
7. Laskorin B. N., Volkov V. P., Gasteva N. Yu., Chumakova G. M., Kostylev D. S. Patent RU 2049129, 22.03.1993.
8. Beskrovnaya V. P., Chernov V. K., Kogan D. I., Beskrovnyy V. E. Patent RU 2131304, 15.05.1997.
9. Aleksandrov A. V., Litvinova N. M., Aleksandrova T. N., Bogomyakov R. V. Patent RU 2465962, 28.02.2011.
10. Babenko S. A., Graver V. S., Semakina O. K. Patent RU 2099146, 13.12.1995.
11. Albijanic B., Ozdemir O., Nguyen Anh V., Dee Bradshaw A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation. Advances in Colloid and Interface Science, 2010, Vol. 159, pp. 1—21.
12. Verrelli D. I., Koh P. T.L., Bruckard W. J., Schwarz M. P. Variations in the induction period for particle—bubble attachment. Minerals Engineering, 2012, Vol. 36—38, pp. 219—230.
13. David I. Verrelli D. I., Albijanic B. A comparison of methods for measuring the induction time for bubble—particle attachment. Minerals Engineering, 2015, Vol. 80, pp. 8—13.
14. Xia W., Wang Y. Role prewetting/immersion time in the attachment time between air bubble and Taixi oxidized coal. International Journal of Mineral Processing, 2017, Vol. 163, pp. 9—13.
15. Albijanic B., Subasinghe G. K.N., Bradshaw D. J., Nguyen A. V. Influence of liberation on bubble-particle attachment time in flotation. Minerals Engineering, 2015, Vol. 74, pp. 156— 162.
16. Krasowska M., Zawala J., Malysa K. Air at hydrophobic surfaces and kinetics of three phase contact formation. Advances in Colloid and Interface Science, 2009, Vol. 147—148, pp. 155—169.
17. Zhou Y., Albijanic B., Tadesse B., Wang Y., Yang J. Investigation of bubble-particle attachment interaction during flotation. Minerals Engineering, 2019, Vol. 133, pp. 91—94.
18. Yaremko Z. M., Soltys M. N. On the estimation of aggregation of suspension particles by sedimentometric analysis. Kolloidnyy zhurnal. 1976, Vol. XXXVIII, no 5, pp. 1032—1033. [In Russ].
19. Pan'shin A. M., Evdokimov S. I. Zinc flotation process improvement using pulp thermal conditioning. Obogashchenie rud. 2009, no 1, pp. 29—34. [In Russ].
20. Semenov E. V. Calculation of the probability of a collision of suspended particles in a suspension stream. Kolloidnyy zhurnal. 1981. Vol. XLIII, no 5, pp. 912—917. [In Russ].
21. Lebedev A. E., Lichak D. A., Zaytsev A. I., Bytev D. O. The influence of the polydispersity of the solid fraction on the process of separation of suspensions. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya. 2002, Vol. 45, no 7, pp. 114—116. [In Russ].
22. Evdokimov S. I. Pan'shin A. M. Creation and implementation of an intensive technology for the processing of lead-zinc ores. Tsvetnye metally. 2008, no 3, pp. 17—20. [In Russ].
23. Li Z., Yoon R-H. AFM force measurements between gold and silver surfaces treated in ethyl xanthate solutions: Effect of applied potentials. Minerals Engineering, 2012, Vol. 36—38. pp. 126—131.
24. Darabi H., Koleini S. M.J., Deglon D., Rezai B., Abdollahy M. Investigation of bubble-particle interactions in a mechanical flotation cell, part 1: Collision frequencies and efficiencies. Minerals Engineering, 2019, Vol. 134. pp. 54—64.
25. Matveeva T. N., Gromova N. K., Lantsova L. B. Development of a method for selective flotation of antimony and arsenic sulfides in the enrichment of complex gold-bearing ores. Tsvetnye metally. 2019, no 4, pp. 4—7. [In Russ].
26. Algebraistova N. K., Gol'sman D. A., Kolotushkin D. M., Prokop'ev I. V. Technological evaluation of stale tailings processing of gold-containing low-sulfide ore. Tsvetnye metally. 2018, no 5, pp. 12—15. [In Russ].
27. Petrov S. V. About the dependence of flotation extraction of platinoids on the metal content in ore. Obogashchenie rud. 2015, no 5, pp. 14—16. [In Russ].
28. Evdokimov S. I., Datsiev M. S., Podkovyrov I. Yu. Gravity separation under conditions of a specially formed high content of metals in the initial ore. Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya. 2014, no 2, pp. 3—9. [In Russ].

Mining World Russia
Subscribe for our dispatch