Application of Geoscan 401 unmanned aerial survey system to airborn magnetic measurements at iron ore deposits

Authors: Сясько А. А., Гриб Н. Н., Имаев В. С. и др. 

Magnetic survey is the most informative and economic method for prospecting and exploration of iron ore deposits. Unmanned survey techniques allow avoiding problems of ground methods in adverse and remote terrain, and speed up surveying. For assessing capacities of unmanned aerial survey of iron ore objects in Yakutia, tests of Geoscan unmanned system were carried out at the previously well-studied, South Yakutia’s largest iron ore deposit. The tests determined serviceability of the aerial survey system by comparing the data of surface and airborn magnetic measurements. The analysis of magnetic fields showed total identity of anomalies detected by the surface and aerial surveys. Moreover, the aerial survey identified a weak anomaly omitted in the magnetic field of the surface survey. Conversion of the vertical gradient of the magnetic field showed that the anomaly was governed by a blind ore body with its top boundary at a depth of 200–250 m below ground surface. The standard deviation calculated for array data without gradient intervals made 1.01 nT. The absolute error of height in the reference and check flight is not more than 1.5 m. The reference and check measurements exhibit high repeatability. Per one flight over a net of profiles spaced at 100 m, the area of 1 kmwas surveyed. The flight time was a little more than 20 min. Geoscan 401 unmanned aerial survey system additionally provides ortho-photographic plans, topography survey and 3D modeling, subject to user’s requirements, concurrently with magnetic measurements.

Keywords: Мagnetic exploration, iron ore deposits, unmanned airborn magnetic measurement system, low-altitude aeromagnetic survey, unmanned technologies.
For citation:

Syasko A. A., Grib N. N., Imaev V. S., Kolodeznikov I. I., Kachaev A. V. Application of Geoscan 401 unmanned aerial survey system to airborn magnetic measurements at iron ore deposits. MIAB. Mining Inf. Anal. Bull. 2019;(12):151-160. [In Russ]. DOI: 10.25018/0236-1493-201912-0-151-160.

Issue number: 12
Year: 2019
Page number: 151-160
ISBN: 0236-1493
UDK: 550.838.2
DOI: 10.25018/0236-1493-2019-12-0-151-160
Article receipt date: 17.05.2019
Date of review receipt: 21.10.2019
Date of the editorial board′s decision on the article′s publishing: 11.11.2019
About authors:

A.A. Syasko, Cand. Sci. (Eng.), Director, «Neryungrigeophysics» LLC,
678960, Neryungri, Russia,
N.N. Grib1, Dr. Sci. (Eng.), Professor, Deputy Director for Science, e-mail:,
V.S. Imaev, Dr. Sci. (Geol. Mineral.), Professor, Chief Researcher,
Institute of the Earth’s Crust, Irkutsk, Russia,
I.I. Kolodeznikov, Dr. Sci. (Geol. Mineral.), Professor, President,
Academy of Sciences of the Sakha Republic (Yakutia), Yakutsk, Russia,
A.V. Kachaev1, Head of Laboratory,
1 Technical Institute (branch) of M.K. Ammosov North-Eastern Federal University,
678960, Neryungri, Republic of Sakha (Yakutia) Russia.

For contacts:

N.N. Grib, e-mail:


1. Parshin A. V. Perspectives of unmanned aircrafts appliance while execution of geological prospecting works on the ore objects of the Baikal mountain area. Voprosy estestvoznaniya. 2015, no 2, pp. 97—101. [In Russ].
2. Macnae J. Design specifications for a geophysical unmanned air vehicle assembly (GUAVAS). SEG Technical Program Expanded Abstracts. 1995;(14):375—376. DOI: 10.1190/1.1887449.
3. Parshin A. V. Patent RU 172078 U1, 28.06.2017.
4. Korotkov V. V., Glinskiy N. A., Kirsanov V. N., Kleper N. B., Kuznetsova A. V., Tsirel' V. S. Measurements using unmanned aerial vehicles — a new stage of development of domestic aerogeophysics. Rossiyskiy geofizicheskiy zhurnal. 2014. Vol. 53—54, pp. 122—125. [In Russ].
5. GeoSurv II, available at: http: // www.GeoSurv II mae/wp-content/uploads/ UAV-Projects.… (accessed 07.05.2019).
6. Baogang Zhang, Ziqi Guo, Leiqi Zhu, Yanchao Qiao A three-component aeromagnetic compensation for UAV platform. GEM Beijing 2011: International workshop on gravity, electrical & magnetic methods and their applications. Conference Paper. Beijing China, 2011, October 10—13. DOI: 10.1190/1.3659108.
7. Martin P. G., Payton O. D., Fardoulis J. S. et al. The use of unmanned aerial systems for the mapping of legacy uranium mines. Journal of Environmental Radioactivity. 2015;(143):135—140.
8. Pirttyavi M. Ryssänlampi magnetic survey using Radai UAV system and its comparison to airborne and ground magnetic data of GT: Detailed Survey Report, 21.09.2015, available at: http: // www.Ryssänlampi magnetic survey using Radai UAV system and raportti/arkisto/73_2015.pdf (accessed 07.05.2019).
9. Tezkan B., Bergers R., Stoll J. B., Munch U. Electromagnetic measurement method using unmanned aerial system: Research project AIDA, available at: http: // www.Electromagnetic measurement method using images/Documente/aida.pdf (accessed 07.05.2019).
10. Wood A., Cook I., Doyle B. et al. Experimental aeromagnetic survey using an unmanned air system. The Leading Edge. 2016;35(3):270—273.
11. Semenova M. P., Tsirel' V. S. Prospects of development of unmanned aerial geophysics. Razvedka i okhrana nedr. 2016, no 8, pp. 34—39. [In Russ].
12. Syas'ko A. A. Primenenie kompleksa Geoskan 401 v aeromagnitorazvedke [Application of the complex GEOSCAN 401 in aeromagnetics], available at: (accessed 17.04.2019).
13. Geoskan 401. Tekhnicheskie kharakteristiki [GEOSCAN 401. Technical parameters], available at:
14. Instruktsiya po magnitorazvedke. Nazemnaya magnitnaya s"emka, aeromagnitnaya s"emka, gidromagnitnaya s"emka [Instruction on aeromagnretics. Ground magnetic survey, aeromagnetic syrvey, hydromagnetic survey], Leningrad, Nedra, 1981, 263 p.
15. Metodicheskie rekomendatsii po vypolneniyu malovysotnoy aeromagnitnoy s"emki. Ministerstvo prirodnykh resursov i ekologii RF [Methodological recommendations on execution of low-altitude aeromagnetic survey. Ministry of natural resources and ecology RF], Moscow, 2018, 32 p.
16. Magnitometricheskiy kompleks Geoskan [Magnetometric complex GEOSCAN], available at: (accessed 17.04.2019).
17. Agisoft Metashape (PhotoScan) Pro 1.5.1 — programma, pozvolyayushchaya avtomaticheski sozdavat' vysokokachestvennye 3D modeli ob"ektov na osnove tsifrovykh fotografiy [Agisoft Metashape (PhotoScan) Pro 1.5.1 software, allowing generating of high-quality 3D models of the objects based on digital photos], available at: https://легион.net/agisoft-photoscan-pro-rus/ (accessed 17.04.2019).

Mining World Russia
Subscribe for our dispatch