Geochemistry and petrography of skarn mineralization associated with Syrostan massive, Miass region (Southern Ural)

A considerable type of deposits, including those for W, Sn, Mo, and Cu, are found in the skarn. Skarn mineralization can be found southwest of Miass City, near the boundary between marble deposits and diorite in massive complex. We describe the Skarn’s petrography and geochemistry in this research. For our geochemical analysis with ICP-MS, EMPA, and X-ray spectral fluorescence analysis and petrography study, we collected samples of both the skarn and igneous rocks in the Syrostan massive. Petrography study revealed that garnet, epidote, amphibole, and pyroxene dominate skarn mineralization. Garnet and pyroxene minerals represent early metasomatic stage, indicating a prograde stage of alteration. Retrograde alteration, is distinguished by the presence of epidote, quartz, calcite, and chlorite. The skarn is associated with Syrostan massive, which dominant by metaluminous I-type granite and high-K calc-alkaline series granitic rocks. In comparison to igneous rocks granite and diorite, the skarn sample showed high enrichment in HREE. Skarn samples appeared to have higher concentrations of Mo, W, Sn, Ta, and Nb than igneous rocks form the Syrostan massive. skarn mineralization containing iron oxides, the Co/Ni ratios in the iron oxide (2.5 to 5.5) describe how the hydrothermal process affects the magmatic source. Based on these findings, we propose that W, Sn, and iron oxide mineralization may occur in skarn.

Keywords: geochemistry, petrography, skarn mineralization, Retrograde alteration, hydrothermal process, iron oxide, Syrostan massive.
For citation:

Mohammed Abdalla Elsharif Ibrahim, Kotelnikov A. E., Georgievskiy A. F., Samia Abdelrahman Ibrahim, Musab Hassan, Anas Mohamed Abaker Babai. Geochemistry and petrography of skarn mineralization associated with Syrostan massive, Miass region (Southern Ural). MIAB. Mining Inf. Anal. Bull. 2024;(4):86-103. DOI: 10.25018/0236_1493_2024_4_0_86.


This paper has been supported by the RUDN University Strategic Academic Leadership Program.

Issue number: 4
Year: 2024
Page number: 86-103
ISBN: 0236-1493
UDK: 550.8+550.4+550.3
DOI: 10.25018/0236_1493_2024_4_0_86
Article receipt date: 07.03.2023
Date of review receipt: 09.10.2023
Date of the editorial board′s decision on the article′s publishing: 10.03.2024
About authors:

Mohammed Abdalla Elsharif Ibrahim1, Graduate Student, Researcher; Assistant, e-mail:, ORCID ID: 0000-0002-5634-5695,
A.E. Kotelnikov1, Cand. Sci. (Geol. Mineral.), Assistant Professor, Head of Department, e-mail:, ORCID ID: 0000-0003-0622-8391,
A.F. Georgievskiy1, Dr. Sci. (Geol. Mineral.), Assistant Professor, e-mail:, ORCID ID: 0000-0003-4835-760X,
Samia Abdelrahman Ibrahim, Dr. Sci. (Geol.), Head of Geology Department, Faculty of Natural Sciences, University of Khartoum, Sudan, e-mail:
Musab Hassan1, Graduate Student, Researcher; Assistant, e-mail:, ORCID ID: 0000-0003-2691-5703,
Anas Mohamed Abaker Babai, Graduate Student, Researcher; Assistant, Faculty of Petroleum Geology and Minerals, University of Bahri, Sudan, e-mail:, ORCID ID: 0000-0003-2317-329X.
1 Department of Mineral Development and Oil and Gas Engineering, Academy of Engineering, Peoples’ Friendship University of Russia (RUDN University), 117198, Moscow, Russia.


For contacts:

Mohammed Abdalla Elsharif Ibrahim, e-mail:


1. Zhang Z., Xie G., Thompson J. Skarn mineralogy and in-situ LA—ICP—MS U—Pb geochronology of wolframite for the Caojiaba tungsten deposit, southern China: Implications for a reduced tungsten skarn deposit. Ore Geology Reviews. 2022, vol. 147, article 104981. DOI: 10.1016/j.oregeorev.2022.104981.

2. Case G. N. D., Graham G. E., Marsh E. E., Taylor R. D., Green C. J., Brown P. J., Labay K. A. Tungsten skarn potential of the Yukon-Tanana Upland, eastern Alaska, USA—A mineral resource assessment. Journal of Geochemical Exploration. 2020, vol. 232, article 106700. DOI: 10.1016/j.gexplo.2020.106700.

3. Meinert L. D. Skarns and skarn deposits. Geoscience Canada. 1992, vol. 19, no. 4, pp. 145—162.

4. Yıldırım E., Yıldırım N., Dönmez C., Koh S. M., Günay K. Mineralogy, rare earth elements geochemistry and genesis of the Keban-West Euphrates (Cu-Mo)-Pb-Zn skarn deposit (Eastern Taurus metallogenic belt, E Turkey). Ore Geology Reviews. 2019, vol. 114, article 103102. DOI: 10.1016/j. oregeorev.2019.103102.

5. Lemière B. A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry. Journal of Geochemical Exploration. 2018, vol. 188, pp. 350—363. DOI: 10.1016/j.gexplo.2018.02.006.

6. Lemière B., Uvarova Y. A. New developments in field-portable geochemical techniques and on-site technologies and their place in mineral exploration. Geochemistry: Exploration, Environment, Analysis. 2020, vol. 20, no. 2, pp. 205—216. DOI: 10.1144/geochem2019-044.

7. Richards M. J. Realising the potential of portable XRF for the geochemical classification of volcanic rock types. Journal of Archaeological Science. 2019, vol. 105, pp. 31—45. DOI: 10.1016/j. jas.2019.03.004.

8. Belogub E. V., Melekestseva I. Yu., Novoselov K. A., Zabotina M. V., Tret'yakov G. A., Zaykov V. V., Yuminov A. M. Listvenite-related gold deposits of the South Urals (Russia). A review. Ore Geology Reviews. 2017, vol. 85, pp. 247—270. DOI: 10.1016/j.oregeorev.2016.11.008.

9. Herrington R. J., Plotinskaya O. Y., Maslennikov V. V., Tessalina S. G. An overview of mineral deposits in the Urals. Ore Geology Reviews. 2017, vol. 85, pp. 1—3. DOI: 10.1016/j.oregeorev.2016. 12.016.

10. Znamenskii S. E., Ankusheva N. N., Velivetskaya T. A., Shanina S. N. Composition and sources of mineral-forming fluids of the Orlovka orogenic gold deposit (Southern Urals). Russian Geology and Geophysics. 2017, vol. 58, no. 9, pp. 1070—1079. [In Russ]. DOI: 10.1016/j.rgg.2017.08.003.

11. Brusnitsyn A. I., Zhukov I. G. Manganese deposits of the Devonian Magnitogorsk palaeovolcanic belt (Southern Urals, Russia). Ore Geology Reviews. 2012, vol. 47, pp. 42—58. DOI: 10.1016/j. oregeorev.2012.01.003.

12. Wang C., Li J., Wang K., Yu Q., Liu G. Geology, fluid inclusion, and stable isotope study of the skarn-related Pb—Zn (Cu—Fe—Sn) polymetallic deposits in the southern Great Xing’an Range, China: implications for deposit type and metallogenesis. Arabian Journal of Geosciences. 2018, vol. 11, no. 5. DOI: 10.1007/s12517-018-3417-6.

13. Niu X., Shu Q., X. Kai, Yuan S., Wei L., Zhang Y., Yu F., Zeng Q., Ma Sh. Evaluating Sn mineralization potential at the Haobugao skarn Zn-Pb deposit (NE China) using whole-rock and zircon geochemistry. Journal of Geochemical Exploration. 2022, vol. 234, article 106938. DOI: 10.1016/j. gexplo.2021.106938.

14. Soloviev S. G., Kryazhev S. G., Dvurechenskaya S. S., Uyutov V. I. Geology, mineralization, fluid inclusion, and stable isotope characteristics of the Sinyukhinskoe Cu-Au skarn deposit, Russian Altai, SW Siberia. Ore Geology Reviews. 2019, vol. 112, article 103039. DOI: 10.1016/j.oregeorev.2019.103039.

15. Belkovsky A. I., Nesterov A. R. Mineralogy of manganese skarns, genetically related to alkaline granites (on the example of the Ufa mine, Southern Urals). Litosfera, 2018, vol. 18, no. 1, pp. 127—132. [In Russ]. DOI: 10.24930/1681-9004-2018-18-1-127-132.

16. Ibrahim M. A. E., Kotelnikov A. E. Geological and Geochemical exploration methods for mineral resources (skarn deposits and rare earth elements). News of Ural State Mining University. 2022, no. 2(66), pp. 7—15. DOI: 10.21440/2307-2091-2022-2-7-15.

17. Kovalev S.G., Kovalev S.S. Ti-Fe-Cr spinels in layered (stratified) complexes of the western slope of the Southern Urals: species diversity and formation conditions. Journal of Mining Institute. 2022, vol. 255, no. 3, pp. 476—492. [In Russ]. DOI: 10.31897/PMI.2022.54

18. Georgievskiy A. F., Bugina V. M., Kotelnikov A. E., Georgievskiy A. A., Mahinja E., Gamilton Z. A. Vein-rock in the Dark kingdom Marble Deposit (South Ural) and their possible connection with gold ore mineralization. IOP Conference Series: Earth And Environmental Science. 2021, vol. 666, no. 2, article 022024. DOI: 10.1088/1755-1315/666/2/022024.

19. Zaykov V. V., Melekestseva I. Y., Zaykova E. V., Kotlyarov V. A., Kraynev Y. D. Gold and platinum group minerals in placers of the South Urals: Composition, microinclusions of ore minerals and primary sources. Ore Geology Reviews. 2017, vol. 85, pp. 299—320. DOI: 10.1016/j.oregeorev.2016.10.001.

20. Maslennikov V. V., Maslennikova S. P., Large R. R., Danyushevsky L. V. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LAICPMS). Economic Geology and the Bulletin of the Society of Economic Geologists. 2009, vol. 104, no. 8, pp. 1111—1141. available at: DOI: 10.2113/gsecongeo.104.8.1111.

21. Jiang J., Gao S., Zheng Y., Lentz D. R., Huang J., Liu J., Tian K., Jiang X. Geological, geochemical, and mineralogical constraints on the genesis of the polymetallic Pb-Zn-Rich Nuocang Skarn Deposit, Western Gangdese, Tibet. Minerals. 2020, vol. 10, article 839. DOI: 10.3390/min10100839.

22. Hassanpour S., Rajabpour S. Magmatic — hydrothermal evolution of the Anjerd Cu skarn deposit, NW Iran: Perspectives on mineral chemistry, fluid inclusions and stable isotopes. Ore Geology Reviews. 2019, vol. 117, article 103269. DOI: 10.1016/j.oregeorev.2019.103269.

23. Ahnaf J. S., Patonah A., Permana H. Petrogenesis of volcanic arc granites from Bayah Complex, Banten, Indonesia. Journal of Geoscience Engineering Environment and Technology. 2019, vol. 4, pp. 104—115. DOI: 10.25299/jgeet.2019.4.2.3171.

24. Chappell B. W., Bryant C. J., Wyborn D. Lithos peraluminous I-type granites. Lithos. 2012, vol. 153, pp. 142—153. DOI: 10.1016/j.lithos.2012.07.008.

25. Alaminia Z., Tadayon M., Finger F., Lentz D. R., Waitzinger M. Analysis of the in fi ltrative metasomatic relationships controlling skarn mineralization at the Abbas-Abad Fe-Cu Deposit, Isfahan, north Zefreh Fault, Central Iran. Ore Geology Reviews. 2020, vol. 117, article 103321. DOI: 10.1016/j. oregeorev.2020.103321.

26. Helmy H. M., Kaindl R., Shibata T. Genetically related Mo-Bi-Ag and U-F mineralization in A-type granite, Gabal Gattar, Eastern Desert, Egypt. Ore Geology Reviews. 2014, vol. 62, pp. 181— 190. DOI: 10.1016/j.oregeorev.2014.03.008.

27. Song S., Mao J., Xie G., Su Q., Jian W., Ouyang Y. Deciphering deep-seated, highly fractionated, and reduced granitic magma systems associated with world-class scheelite skarn ores. A case study of the Zhuxi deposit, South China. Ore Geology Reviews. 2022, vol. 149, article 105084. DOI: 10.1016/j.oregeorev.2022.105084.

28. Soloviev S. G., Kryazhev S. G., Dvurechenskaya S. S., Kryazhev V. S., Emkuzhev M. S., Bortnikov N. S. The superlarge Tyrnyauz skarn W-Mo and stockwork Mo(-W) to Au(-Mo, W, Bi, Te) deposit in the Northern Caucasus, Russia: Geology, geochemistry, mineralization, and fluid inclusion characteristics. Ore Geology Reviews. 2021, vol. 138, article 104384. DOI: 10.1016/j.oregeorev.2021.104384.

29. Zhang W., Jiang S. Y., Gao T., Ouyang Y., Zhang D. The effect of magma differentiation and degassing on ore metal enrichment during the formation of the world-class Zhuxi W-Cu skarn deposit: Evidence from U-Pb ages, Hf isotopes and trace elements of zircon, and whole-rock geochemistry. Ore Geology Reviews. 2020, vol. 127, article 103801. DOI: 10.1016/j.oregeorev.2020.103801.

30. Maghraoui M. El., Joron J. L., Raimbault L., Treuil M. Element mobility during metasomatism of granitic rocks in the Saint-Chély d’Apcher area (Lozère, France). Environment International. 2002, vol. 28, no. 5, pp. 349—357. DOI: 10.1016/S0160-4120(02)00036-3.

31. Somarin A. K., Moayyed M. Graniteand gabbrodiorite-associated skarn deposits of NW Iran. Ore Geology Reviews. 2002, vol. 20, no. 3—4, pp. 127—138. DOI: 10.1016/S0169-1368(02)00068-9.

32. Goryachev N. A., Shpikerman V. I., Church S. E., Gvozdev V. I. Calcic skarn ore deposits of the North-East Russia. Ore Geology Reviews. 2018, vol. 103, pp. 3—20. DOI: 10.1016/j.oregeorev. 2018.03.024.

33. Popov M. P. Peculiarities of rare-metal mineralization and genetic relationship of mineral associations in the eastern rim of Murzinsko-Aduysky anticlinorium (the Ural Emerald Belt). Journal of Mining Institute. 2022, vol. 255, no. 3, pp. 337—348. [In Russ]. DOI: 10.31897/PMI.2022.19.

34. Peccerillo A., Taylor S. R., Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology. 1976, vol. 58, no. 1, pp. 63—81. DOI: 10.1007/BF00384745.

35. McDonough W. F., Sun S. S. The composition of the Earth. Chemical Geology. 1995, vol. 120, no. 3—4, pp. 223—253. DOI: 10.1016/0009-2541(94)00140-4.

36. Sipahi F., Gücer M. A., Eker Ç. S. Geochemical composition of magnetite from different iron skarn mineralizations in NE Turkey: implication for source of ore-forming fluids. Arabian Journal of Geosciences. 2020, vol. 13, no. 2. DOI: 10.1007/s12517-019-5052-2.

37. Zahedi A., Boomeri M., Nakashima K., Mackizadeh M. A., Ban M., Lentz D. R. Geochemical characteristics, origin, and evolution of ore-forming fluids of the Khut Copper Skarn deposit, west of Yazd in Central Iran. Resource Geology. 2014, vol. 64, no. 3, pp. 209—232. DOI: 10.1111/rge.12037.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.