UAV-based aeromagnetic survey in prospecting prediction of gold deposits

The article discusses aeromagnetic survey in prospecting a gold-bearing skarn deposit as a case-study of the Choya ore field. Such gold-bearing deposits feature weak-contrast magnetic properties, no sharp outlines and low-contrast magnetic fields. For this reason, interpretation of aeromagnetic survey results uses special analytical and modeling methods. The aeromagnetic surveys were aimed to identify and trace magnetically contrast skarn zones which may have ore control. The aeromagnetic surveys used unmanned aerial vehicles (UAVs). The magnetic field has a weakly differentiated structure, which may be due to the dominance of the regional magnetism over the local. For this reason, the key transforms of the field were calculated. The transforms reveal some features of the magnetic field as follows: the vertical derivative of the anomalous magnetic field makes it possible to eliminate the regional component conditioned by large deep-seated objects; the full horizontal gradient of the anomalous magnetic field accentuates the zones of the highest changes in the field, which imply the vertical boundaries existing in the section. The high-quality interpretation used the lineament analysis and identified the linear features of the field. In the 3D model interpretation, the most informative 3D inversion result is the section of the magnetic susceptibility for the depth of 65 m. The section contains characteristics of two types: axes of structures having the negative magnetic susceptibility and the interfaces of blocks having different magnetic susceptibilities. The joint interpretation of the available geological data and the magnetic survey results improves reliability of prospecting mineral-promising areas.

Keywords: low-altitude aeromagnetic survey, gold-bearing skarn deposits, unmanned aeromagnetic survey vehicles, magnetic field transform, lineament analysis, 3D interpretation.
For citation:

Grib N. N., Ermolin E. Yu., Melnikov A. E., Grib G. V., Kachaev A. V. UAV-based aeromagnetic survey in prospecting prediction of gold deposits. MIAB. Mining Inf. Anal. Bull. 2022;(1):115-130. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_115.

Acknowledgements:
Issue number: 1
Year: 2022
Page number: 115-130
ISBN: 0236-1493
UDK: 550.814.3
DOI: 10.25018/0236_1493_2022_1_0_115
Article receipt date: 26.05.2021
Date of review receipt: 24.09.2021
Date of the editorial board′s decision on the article′s publishing: 10.12.2021
About authors:

N.N. Grib1, Dr. Sci. (Eng.), Professor, Deputy Director for Research, e-mail: grib-n-n@yandex.ru,
E.Yu. Ermolin, Cand. Sci. (Geol. Mineral.), General Director, Service Geophysical Company JM Service LLC, 195274, Saint-Petersburg, Russia, e-mail: ermolin_stud@list.ru,
A.E. Melnikov, Cand. Sci. (Geol. Mineral.), Leading Researcher, Melnikov Permafrost Institute, Siberian Branch of Russian Academy of Sciences, 677010, Yakutsk, Russia,
G.V. Grib1, Cand. Sci. (Geol. Mineral.), Head of Laboratory,
A.V. Kachaev1, Head of Laboratory,
1 Technical Institute (branch) of M.K. Ammosov North-Eastern Federal University, 678960, Neryungri, Russia.

 

For contacts:

N.N. Grib, e-mail: grib-n-n@yandex.ru.

Bibliography:

1. Parshin A. V. Prospects for using unmanned aerial vehicles in geological exploration of ore objects in the Baikal mountain region. Voprosy estestvoznania. 2015, no. 2, pp. 97—101. [In Russ].

2. Macnae J. Design specifications for a geophysical unmanned air vehicle assembly (GUAVAS). SEG Expanded Abstracts. 1995, vol. 14, pp. 375—376.

3. Parshin A. V. Patent RU 172078 U1. 19.07.2016. [In Russ].

4. Jiangwei Bian, XubenWang, Song Gao Experimental aeromagnetic survey using a rotarywing aircraft system. A case study in Heizhugou, Sichuan, China. Journal of Applied Geophysics. 2021, vol. 184, article 104245. DOI: 10.1016/j.jappgeo.2020.104245.

5. Cunningham M., Samson C., Wood A., Cook I., Doylel B. Aeromagnetic surveying with a rotary-wing unmanned aircraft system: a case study from a zinc deposit in Nash Creek, New Brunswick, Canada. Pure and Applied Geophysics. 2018, vol. 175, pp. 3145—3158. DOI: 10.1007/s00024-017-1736-2.

6. Korotkov V. V., Glinsky N. A., Kirsanov V. N., Kleper N. B., Kuznetsova A. V., Tsirel V. S. Measurements using unmanned aerial vehicles — a new stage of development of domestic aerogeophysics. Russian Geophysical Journal. 2014, vol. 53—54, pp. 122—125. [In Russ].

7. GeoSurvII, http://www.GeoSurv II carleton.ca mae/wp-content/uploads/UAV-Projects.… (accessed 07.05.2019).

8. Xiong Li, Yaoguo Li, Xiaohong Meng, Baogang Zhang, Ziqi Guo, Le Zhu, Yanchao Qiao A three-component aeromagnetic compensation for UAV platform. International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications. Beijing, China, 2011, October 10—13. Society of Exploration Geophysicists Publ, pp. 66—66. DOI: 10.1190/1.3659108.

9. Martin P. G., Payton O. D., Fardoulis J. S., Richards D. A., Scott T. B. The use of unmanned aerial systems for the mapping of legacy uranium mines. Journal of Environmental Radioactivity. 2015, vol. 143, pp. 135—140.

10. Pirttyavi M. Ryssänlampi magnetic survey using Radai UAV system and its comparison to airborne and ground magnetic data of GT: Detailed Survey Report, 21.09.2015. http:. www. Ryssänlampi magnetic survey using Radai UAV system and tupa.gtk.fi raportti/arkisto/73_2015. pdf (accessed 07.05.2019).

11. Tezkan B., Bergers R., Stoll J. B., Munch U. Electromagnetic measurement method using unmanned aerial system: Research project AIDA. http://www.Electromagnetic measurement method using unmanned...geotechnologien.de images/Documente/aida.pdf (accessed 07.05.2019).

12. Wood A., Cook I., Doyle B., Cunningham M., Samson C. Experimental aeromagnetic survey using an unmanned air system. The Leading Edge. 2016, vol. 35, no 3, pp. 270—273. DOI: 10.1190/tle35030270.1.

13. Semenova M. P., Tsirel V. S., Prospects for the development of unmanned airborne geophysics. Prospect and protection of mineral resources. 2016, no. 8, pp. 34—39. [In Russ].

14. Kalmykov B. A., Levin F. D., Trusov A. A. Possibilities of modern airborne geophysical methods in forecasting and prospecting for gold deposits. Zoloto i tekhnologii. 2017, no. 2(36), pp. 64—70. [In Russ].

15. Syasko A. A., Grib N. N., Redlikh E. F. The comparative analysis of precambrian gold reserves formations of crystallized shields. Mining Science and Technology. 2017, no. 2, pp. 11— 27. [In Russ]. DOI: 10.17073/2500-0632-2017-2-11-25.

16. Hayman P. C., Thebaud N., Pawley M., Barnes S. J., Cas R. A. F., Amelin Yu., Sapkota J., Squire R. J., Campbell I. H., Pegg I. Evolution of a ~2.7 Ga large igneous province. A volcanological, geochemical and geochronological study of the Agnew Greenstone Belt, and new regional correlations for the Kalgoorlie Terrane (Yilgarn Craton, Western Australia). Precambrian Research. 2015, vol. 270, pp. 334—368.

17. Syasko A. A., Grib N. N., Imaev V. S., Kolodeznikov I. I., Kachaev A. V. Application of Geoscan 401 unmanned aerial survey system to airborn magnetic measurements at iron ore deposits. MIAB. Mining Inf. Anal. Bull. 2019, no. 12, pp. 151—161. [In Russ]. DOI: 10.25018/02361493-2019-12-0-151-160.

18. Syasko A. A., Grib N. N., Imaev V. S., Imaeva L. P., Kolodeznikov I. I. Detailed airborne geophysical survey of complexly dislocated strata in the sutam terrane (aldan shield) during studies of iron-ore deposits. Geodynamics & Tectonophysics. 2020, no. 11(1), pp. 141—150. [In Russ]. DOI: 10.5800/GT-2020-11-1-0468.

19. Gusev A. I., Gusev N. I., Tabakaeva E. M. Restored introduced magmo-roud-metasomatic w-au-te system of the altaya goren. International journal of applied and fundamental research. 2016, no. 10, pp. 96—101. [In Russ].

20. Gusev A. I., Gusev N. I. Geological structure of Choi ore field of Gorny Altai. Ores and Metals. 1998, no. 2, pp. 90—99. [In Russ].

21. Gas’kov I. V., Borisenko A. S., Babich V. V., Naumov E. A. The stages and duration of formation of gold mineralization at copper-skarn deposits (Altai-Sayan folded area). Geology and Geophysics. 2010, vol. 51, no. 10, pp. 1399—1412. [In Russ].

22. Geoskan 401. Tekhnicheskie kharakteristiki, available at: http://avia.pro/blog/geoskan401-tehnicheskie-harakteristiki-foto.

23. Metodicheskie rekomendatsii po vypolneniyu malovysotnoy aeromagnitnoy s"emki. Ministerstvo prirodnykh resursov i ekologii RF-M, 2018. 32 s., available at: https://www.researchgate.net/publication/352466408_Metodiceskie_rekomendacii_po_vypolneniu_malovysotnoj_aeromagnitnoj_semki.

24. Instruktsiya po magnitorazvedke (utv. M-vom geologii SSSR 23.03.1979) [Instruction on magnetic prospecting (approved by the USSR Ministry of Geology 23.03.1979)] Leningrad: Nedra, 1981, 263 p. [In Russ].

25. Mezhdunarodnoe geomagnitnoe analiticheskoe pole: Material iz Vikipedii — svobodnoy entsiklopedii, available at: https://ru.wikipedia.org/?curid=5624940&oldid=108348871.

26. Chernykh A. A., Glebovskiy V. Yu., Korneva M. S., Egorova A. V. «Microleveling» — modern technology for leveling and adjustment of spatial geophysical surveys. Russian Geophysics. 2015, no. 4, pp. 40—46. [In Russ].

27. Paket programm Zond, available at: http://zond-geo.com/software/.

28. Shepelenko L. I. i dr. Rezul'taty poiskov zolotoorudeneniya v rayone Choyskogo rudoproyavleniya (otchet Turochakskoy partii za 1975—1977 gg.) [Results of prospecting for gold mineralization in the Choyskoye ore occurrence area (report of Turochak party for 1975—1977)], Biysk, 1977. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.