Activation leaching of difficult primary ore at Malmyzh deposit

The current approaches to processing low-grade porphyry–copper ore, including copper mostly composed of chalcopyrite, are reviewed. Copper recovery from such ore by heap leaching is the most optimum method of processing. Effect of different oxidizers on heap leaching performance and on chemistry of copper minerals is discussed. The influence of highactive oxygen-bearing oxidizers on transformation of substance and structure of sulfide ore is theoretically validated. The simulated processes of heap leaching of Malmyzh difficult primary ore are studied using small laboratory columns. Malmyzh ore contains copper and gold, and the deposit features low copper and gold contents at large ore reserves. The synthesis of oxygenbearing oxidizers and complexing agents involved electro-photoactivation of process solutions. Pre-oxidation used activated sulfuric–nitrite solutions. Then, cycling sprinkling of samples by activated chlorinated and sulfuric solutions was carried out in percolators. For 154 outlet flows, gold recovery reached 67%; copper and silver recoveries were 71% and 89.6%, respectively. The tested circuit of cyclic activated leaching in percolation regime enabled high recovery of the main valuable components at admissible production and economy data.

Keywords: porphyry–copper ore, chalcopyrite, oxidation, active oxygen forms, electro-photoactivation of leaching solutions, diffusion pre-oxidation, chlorinated percolation leaching, sulfuric leaching.
For citation:

Rasskazova A. V., Sekisov A. G., Burdonov A. E., Activation leaching of difficult primary ore at Malmyzh deposit. MIAB. Mining Inf. Anal. Bull. 2023;(1):130-141. [In Russ]. DOI: 10.25018/0236_1493_2023_1_0_130.

Acknowledgements:

The studies were carried out using facilities of the Center for Shared Use of Scientific Equipment at the Center for Processing and Storage of Scientific Data of the Far East Branch of the Russian Academy of Sciences, supported by the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 075-15-2021-663.

Issue number: 1
Year: 2023
Page number: 130-141
ISBN: 0236-1493
UDK: 622.772
DOI: 10.25018/0236_1493_2023_1_0_130
Article receipt date: 26.05.2022
Date of review receipt: 14.11.2022
Date of the editorial board′s decision on the article′s publishing: 10.12.2022
About authors:

A.V. Rasskazova1, Cand. Sci. (Eng.), Leading Researcher, e-mail: annbot87@mail.ru, ORCID ID:0000-0002-6998-8120,
A.G. Sekisov1, Dr. Sci. (Eng.), Deputy Director, e-mail: sekisovag@mail.ru, ORCID ID:0000-0001-5780-6150,
A.E. Burdonov, Cand. Sci. (Eng.), Assistant Professor, e-mail: burdonov@istu.edu, Irkutsk National Research Technical University, 664074, Irkutsk, Russia, ORCID ID: 0000-0001-5298-445X,
1 Institute of Mining, Far Eastern Branch of the Russian Academy of Sciences, 680000, Khabarovsk, Russia.

 

For contacts:

A.V. Rasskazova, e-mail: annbot87@mail.ru.

Bibliography:

1. Nikoloski A. N., O'Malley G. P. The acidic ferric sulfate leaching of primary copper sulfides under recycle solution conditions observed in heap leaching. Part 1. Effect of standard conditions. Hydrometallurgy. 2018, vol. 178, pp. 231—239. DOI: 10.1016/j.hydromet.2018.05.006.

2. Mokmeli M., Torabi Parizi M. Low-grade chalcopyrite ore, heap leaching or smelting recovery route? Hydrometallurgy. 2022, vol. 211, article 105885. DOI: 10.1016/j.hydromet.2022.105885.

3. Lizama H. M. Processing of chalcopyrite ore by heap leaching and flotation. International Journal of Mineral Processing. 2017, vol. 168, pp. 55—67. DOI: 10.1016/j.minpro.2017.09.009.

4. Tomina V. N., Khrennikov A. A., Lebed’ A. B., Naboychenko S. S. Heap leaching of copper from the ore of the Volkovskoye deposit. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2010, no. 4, pp. 3—6. [In Russ].

5. Chetty D. Acid-gangue interactions in heap leach operations: a review of the role of mineralogy for predicting ore behavior. Minerals. 2018, vol. 8, no. 2, 47. DOI: 10.3390/min8020047.

6. He J., DuPlessis L., Barton I. Heap leach pad mapping with drone-based hyperspectral remote sensing at the Safford Copper Mine, Arizona. Hydrometallurgy. 2022, vol. 211, article 105872. DOI: 10.1016/j.hydromet.2022.105872.

7. Sekisov A., Rasskazova A. Assessment of the possibility of hydrometallurgical processing of low-grade ores in the oxidation zone of the Malmyzh Cu-Au porphyry deposit. Minerals. 2021, vol. 11, no. 1, pp. 1—11. DOI: 10.3390/min11010069.

8. Rasskazova A. V., Sekisov A. G., Kirilchuk M. S., Vasyanov Y. A. Stage-activation leaching of oxidized copper — gold ore: theory and technology. Eurasian Mining. 2020, no. 1, pp. 52—55. DOI: 10.17580/em.2020.01.10.

9. Thomas M. Understanding gangue acid consumption in copper sulfide heap leaching: Predicting the impact of carbonates, silicates and secondary precipitates. Minerals Engineering. 2021, vol. 171, article 107090. DOI: 10.1016/j.mineng.2021.107090.

10. Yavari M., Ebrahimi S., Aghazadeh V., Ghashghaee M. Intensified bioleaching of copper from chalcopyrite: decoupling and optimization of the chemical stage. Iranian Journal of Chemistry & Chemical Engineering-International English Edition. 2020, vol. 39, no. 5, pp. 343—352. DOI: 10.30492/IJCCE.2019.35866.

11. Levenets O. O. Heap bioleaching for the extraction of valuable components from lowgrade sulfide copper-nickel ores. MIAB. Mining Inf. Anal. Bull. 2018, no. S57, pp. 185—191. [In Russ]. DOI: 10.25018/0236-1493-2018-12-57-185-191.

12. Khainasova T. S. Bacterial and chemical methods of ore processing. MIAB. Mining Inf. Anal. Bull. 2018, no. S57, pp. 192—197. [In Russ]. DOI: 10.25018/0236-1493-2018-12-57-192-197.

13. Rubtsov Yu. I., Avdeev P. B., Cherkasov V. G., Lavrov A. Yu. Basic principles of highspeed activated heap leaching of gold. MIAB. Mining Inf. Anal. Bull. 2021, no. 3-1, pp. 88—98. [In Russ]. DOI: 10.25018/0236_1493_2021_31_0_88.

14. Wu J., Ahn J., Lee J. Comparative leaching study on conichalcite and chalcopyrite under different leaching systems. Korean Journal of Metals and Materials. 2019, vol. 57, no. 4, pp. 245—250. DOI: 10.3365/KJMM.2019.57.4.245.

15. Seo S. Y., Choi W. S., Kim M. J., Tran T. Leaching of a Cu-Co ore from Congo using sulphuric acid hydrogen peroxide leachants. Journal of Mining and Metallurgy, Section B: Metallurgy. 2013, vol. 49, no. 1, pp. 1—7. DOI: 10.2298/JMMB120103035S.

16. Ahn J. H., Kim P. D., Hwang S. C., Seo J. Y., Lee S. J., Ogawa Y., Ida J., Sasaki Y., Nagai T., Otsu T. Electrolyzed sulfuric acid application in semiconductor cleaning processes: An advanced substitution of SPM cleaning. ECS Transactions. 2017, vol. 77, no. 5, pp. 207—212.

17. Beysembaev B. B., Kunaev A. M., Kenzhaliev B. K. Teoriya i praktika kuchnogo vyshchelachivaniya medi [Theory and practice of heap leaching of copper], Almaty, Gylym, 1998, 348 p.

18. Khalezov B. D. Kuchnoe vyshchelachivanie mednykh i medno-tsinkovykh rud [Heap leaching of copper and copper-zinc ores], Ekaterinburg, RIO UrO RAN, 2013, 332 p.

19. Kondratiev Yu. I., Ushakova S. M., Alkatsev M. I., Soshkin S. V. Influence of the method of introducing of current into the ore mass on the performance of the heap electrochemical leaching process. MIAB. Mining Inf. Anal. Bull. 2018, no. S25, pp. 42—51. [In Russ]. DOI: 10.25018/0236-1493-2018-6-25-42-51.

20. Bai J., Wen J.-K., Huang S.-T., Wu B. Chemical leaching mechanism of chalcopyrite with difference mineralization. Rare Metals. 2013, vol. 32, no. 1, pp. 63—66. DOI: 10.1007/s12598-013-0004-6.

21. Krylova L. N. Efficiency of ozone application for extraction of metals from mineral raw materials. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2022, no. 28(2), pp. 4—15. [In Russ]. DOI: 10.17073/0021-3438-2022-2-4-15.

22. Sekisov A. G., Lavrov A. Yu., Rasskazova A. V. Fotokhimicheskie i elektrokhimicheskie protsessy v geotekhnologii [Photochemical and electrochemical processes in geotechnology], Chita: Izd-vo ZabGU, 2019, 306 p.

23. Aben E. Kh., Rustemov S. T., Bakhmagambetova G. B., Akhmetkhanov D. Enhancement of metal recovery by activation of leaching solution. MIAB. Mining Inf. Anal. Bull. 2019, no. 12, pp. 169—179. [In Russ]. DOI: 10.25018/0236-1493-2019-12-0-169-179.

24. Rasskazova А. V., Konareva Т. G., Sobolev А. А., Kirilchuk М. S., Lavrik А. V. Testing of refractory gold-copper ores using the method of activation percolation leaching. Problems of Subsoil Use. 2020, no. 2 (25), pp. 90—95. [In Russ]. DOI: 10.25635/2313-1586.2020.02.090.

25. Bennett C. R., McBride D., Gebhardt J. E. A comprehensive model for copper sulphide heap leaching: Part 1 Basic formulation and validation through column test simulation. Hydrometallurgy. 2012, vol. 127—128, pp. 150—161. DOI: 10.1016/j.hydromet.2012.08.004.

26. Dement'ev E. V., Druzhinina G. Ya., Gudkov S. S. Kuchnoe vyshchelachivanie zolota i serebra [Heap leaching of gold and silver], Irkutsk, Izd-vo OAO «Irgiredmet», 2004. 352 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.