The topical methods of detecting spontaneous combustion sources in coal mines

Endogenous fires total over 40% of all accidents and incidents in the present-day coal industry, which emphasizes urgency of studying their causes. This study focuses on the key factors that promote spontaneous combustion of coal, which often leads to endogenous fires in mines. The range of such factors includes chemical reactions in coal seams, thermal processing, physical and mechanical properties of coal, proneness of coal to spontaneous combustion and parameters of the environment. It is important to control endogenous firing in coal mines as the subsequent accident management demands colossal human and economic resources and endangers lives of mine personnel. The methods of detecting and controlling endogenous fires in coal mines, including equipment, procedures, advantages and disadvantages are analyzed. The article describes the most common methods: acoustic diagnosis, gas analysis (radon flow density measurement), thermal imagery and thermography, methods of passive control. The radon method is currently an omnibus technique. Further, it is planned to improve the gas analysis method with radon used as a gas–indicator.

Keywords: spontaneous combustion of coal, endogenous fires, gas analyzers, radon density, radon method, thermal imager, thermal imagery control, passive control techniques, industrial and fire safety.
For citation:

Korshunov G. I., Mironenkova N. A., Poleshchuk A. A. The topical methods of detecting spontaneous combustion sources in coal mines. MIAB. Mining Inf. Anal. Bull. 2025; (5):169-180. [In Russ]. DOI: 10.25018/0236_1493_2025_5_0_169.

Acknowledgements:
Issue number: 5
Year: 2025
Page number: 169-180
ISBN: 0236-1493
UDK: 622.822.22
DOI: 10.25018/0236_1493_2025_5_0_169
Article receipt date: 10.10.2024
Date of review receipt: 28.01.2025
Date of the editorial board′s decision on the article′s publishing: 10.04.2025
About authors:

G.I. Korshunov1, Dr. Sci. (Eng), Professor, e-mail: korshunov_gi@pers.spmi.ru, ORCID ID: 0000-0003-2074-9695,
N.A. Mironenkova1, Cand. Sci. (Eng), Assistant Professor, e-mail: Mironenkova_NA@pers.spmi.ru, ORCID ID: 0000-0003-3543-1575,
A.A. Poleshchuk1, Graduate Student, e-mail: poleshuck.nas@yandex.ru, ORCID ID: 0009-0007-6842-9216,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

A.A. Poleshchuk, e-mail: poleshuck.nas@yandex.ru.

Bibliography:

1. Meshkov G. B., Petrenko I. E., Gubanov D. A. The results of the work of the Russian coal industry in 2023. Ugol'. 2024, no. 3, pp. 18—29. [In Russ]. DOI: 10.18796/0041-5790-2024-3-18-29.

2. Baeza A., García-Paniagua J., Guillén J., Montalban B. Influence of architectural style on indoor radon concentration in a radon prone area. A case study. Science of The Total Environment. 2018, vol. 610—611, pp. 258—266. DOI: 10.1016/j.scitotenv.2017.08.056.

3. Kalaigorod V. V., Prostov S. M., Shabanov E. A. Instrumental monitoring at locations of the foci of endogenous fires in the board of the coal mine. Minerals and Mining Engineering. 2023, no. 2, pp. 124—135. [In Russ]. DOI: 10.21440/0536-1028-2023-2-124-135.

4. Fedotkin I. O., Fedotkin D. V. Problems of fires in coal mines and a review of modern approaches to their modeling. Ugol'. 2024, no. 2, pp. 69—73. [In Russ]. DOI: 10.18796/0041-5790-20242-69-73.

5. Zubov V. P., Golubev D. D. Prospects of using modern technologies technological solutions for the development of shallow coal seams, taking into account the danger of the formation of foci of its spontaneous combustionя. Journal of Mining Institute. 2021, vol. 250, pp. 534—541. [In Russ]. DOI: 10.31897/PMI.2021.4.6.

6. Kazanin O. I., Yaroshenko V. V. Reduction of coal losses during mining of the converged layers of the bottom of the Vorkuta deposit. Journal of Mining Institute. 2020, vol. 244, pp. 395—401. [In Russ]. DOI: 10.31897/PMI.2020.4.1.

7. Zlobina A. N., Rikhvanov L. P., Baranovskaya N. V., Farkhutdinov I. M., Wang N. Radioecological danger to the population in the areas of distribution of highly radioactive granites. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2019, no. 3(330), pp. 111—125. [In Russ]. DOI: 10.18799/24131830/2019/3/172.

8. Timosheeva S. S., Smirnov G. I. Russian coal mining and technologies and innovations. XXI century. Technosphere safety. 2022, vol. 7, no. 3, pp. 264—274. [In Russ]. DOI: 10.21285/2500-15822022-3-264-274.

9. Kong B., Li Z., Yang Y., Liu Zh., Yan D. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environmental Science and Pollution Research. 2017, vol. 24, no. 1, pp. 1—18. DOI: 10.1007/s11356-017-0209-6.

10. Deng J., Zhao J. U., Zhang Y. N., Wang C. P., Huang A. C. Thermal behavior and micro characterization analysis of second-oxidized coal. Journal of Thermal Analysis and Calorimetry. 2017, vol. 127, no. 1, pp. 439—448. DOI: 10.1007/s10973-016-5493-8.

11. Tao Xu, Qimiao Xie, Yutao Kang Heat effect of the oxygen-containing functional groups in coal during spontaneous combustion processes. Advanced Powder Technology. 2017, vol. 28, no. 8, pp. 1841—1848. DOI: 10.1016/j.apt.2017.01.015.

12. Myers T., Florio B. Spontaneous combustion of coal. Journal of the Franklin Institute. 2018, pp. 12—20. DOI: 10.1016/j.ijmst.2020.03.001.

13. Rudakov M. L., Rabota E. N., Kolvakh K. A. Assessment of the individual risk of fatal injury to coal mine workers during collapses. Naukovyi Visnyk Natsionalnoho Hirnychoho University. 2020, no. 4, pp. 88—93. DOI: 10.33271/nvngu/2020-4/088.

14. Rodionov V. A., Tursenev S. A., Skripnik I. L., Ksenofontov Yu. G. Results studies of kinetic parameters of spontaneous combustion of coal dust. Journal of Mining Institute. 2020, vol. 246, pp. 617—622. [In Russ]. DOI: 10.31897/PMI.2020.6.3.

15. Zhikharev S. Ya., Rodionov V. A., Pikhkonen L. V. Investigation of technological properties and indicators of explosion and fire hazard of coal dust by innovative methods. Gornyi Zhurnal. 2018, no. 6, pp. 45—49. [In Russ]. DOI: 10.17580/gzh.2018.06.09.

16. Kats V., Adamtsevich L. Method for extracting diagnostic features of the facilities technical condition in the system for monitoring. International Journal for Computational Civil and Structural Engineering. 2022, vol. 18, no. 2, pp. 156—162. DOI: 10.22337/2587-9618-2022-18-2-156-162.

17. Portola V. A., Tailakov O. V., Lee Hee Un, Sobolev V. V., Bobrovnikova A. A. Detection, location and assessment of the state of underground fires by radon anomalies on the Earth's surface. Ugol'. 2021, no. 5, pp. 47—52. [In Russ]. DOI: 10.18796/0041-5790-2021-5-47-52.

18. Portola V. A., Bobrovnikova A. A., Paleev D. Yu., Eremenko A. A., Shaposhnik Yu. N. Investigation of the rate of oxygen sorption by self-igniting sulfide ores. Occupational Safety in Industry. 2020, no. 1, pp. 57—62. [In Russ]. DOI: 10.24000/0409-2961-2020-1-57-62.

19. Leshukov T. V., Legoshchin K. V., Larionov A. V. Spatial variability of radon flux density in the territories of underground coal mining. Advances in current natural sciences. 2020, no. 4, pp. 93—97. [In Russ]. DOI: 10.17513/use.37368.

20. Narsky V. A., Portola V. A. Application of thermal imagers for detection and locations of spontaneous combustion foci that have arisen in mines. Vestnik of safety in coal mining scientific center. 2021, no. 2, pp. 13—18. [In Russ].

21. Kumar S., Mishra P. K., Kumar M., Pratik, Kumar J. Coactive application of environmental sensors for detection and assessment of spontaneous combustion in underground coal mines. International Conference on Energy, Communication, Data Analytics and Soft Computing. Chennai, Institute of Electrical and Electronics Engineers, 2018, p. 631—636. DOI: 10.1109/ICECDS.2017.8389513.

22. Gendler S. G., Prokhorova E. A., Samarov L. Yu., Khomyakov D. O. Development of a riskbased approach for choosing priority areas for reducing occupational injuries in JSC SUEK-KUZBASS. News of the Tula state university. Sciences of Earth. 2021, no. 1, pp. 64—76. [In Russ]. DOI: 10.2501 8/0236_1493_2022_61_0_214.

23. Gawełek E., Drozdzowska B., Fuchs A. Radon as a risk factor of lung cancer. Przeglad Epidemiologiczny. 2017, vol. 1 , no. 71, pp. 90—98.

24. Friedmann H., Baumgartner A., Bernreiter M., Gräser J., Gruber V., Karl F., Kaineder H., Maringer F. J., Linger W., Seidel C., Wurm G. Indoor radon, geogenic radon surrogates and geology — Investigations on their correlation. Journal of Environmental Radioactivity. 2017, vol. 166, pp. 382—389. DOI: 10.1016/j.jenvrad.2016.04.028.

25. Salimov A. E., Shibanov D. A., Ivanov S. L. The risks of failure of a quarry excavator associated with its maintenance and repair. Russian Mining Industry Journal. 2024, no. 2, pp. 97—102. [In Russ]. DOI: 10.30686/1609-9192-2024-2-97-102.

26. Fomin A. I., Khalyavina M. N. Methods of labor protection management at a mining enterprise. XVII Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Prirodnye i intellektual'nye resursy Sibiri. Sibresurs–2018». Sbornik materialov [Results and prospects of scientific and practical conferences «Sibresource–2018»], Kemerovo, KuzGTU, 2018, pp. 122.1—122.8. [In Russ].

27. Voroshilov Ya. S. Multilevel model of employee competence in the field of occupational safety. Russian Mining Industry Journal. 2020, no. 2, pp. 125—129. [In Russ]. DOI: 10.30686/1609-91922020-2-125-129.

28. Myers T., Florio B., Fareo A. G., Kgatle M., Mitchell S., Sithole H., Nchabeleng S. P., Mabasa R., Borole L., Born K., Mungwe S. Spontaneous combustion of coal. Journal of the Franklin Institute. 2018, pp. 12—20. DOI: 10.1016/s0016-0032(11)90445-1.

29. Kong B., Li Z., Yang Y., Liu Zh., Yan D. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environmental Science and Pollution Research. 2017, vol. 24, no. 1, pp. 23453—23470. DOI: 10.1007/s11356-017-0209-6.

30. Singh L. M., Kumar M., Sahoo B. K., Sapra B. K. Study of natural radioactivity, radon exhalation rate and radiation doses in coal and flyash samples from thermal power plants, India. Physics Procedia. 2015, vol. 80, pp. 120—124. DOI: 10.1016/j.phpro.2015.11.070.

31. Sidorova G. P., Krylov D. A., Ovcharenko N. V. Radiation situation in the areas of coal-fired thermal power plants of Russia. Transbaikal state university journal. 2017, no. 5 (23), pp. 36—44. [In Russ]. DOI: 10.21209/2227-9245-2017-23-5-36-44.

32. Legoshchin K. V., Leshukov T. V. Radon hazard in residential premises on territories of coal mining industry development. Fundamental'nye i prikladnye aspekty ustoychivogo razvitiya resursnykh regionov: Sbornik nauchnykh statey [Fundamental and applied aspects of sustainable development of resource regions: collection of scientific articles], Novokuznetsk, 2020, pp. 225—230. [In Russ].

33. Titov A. V., Shandala N. K., Marenny A. M., Ostapchuk T. V., Nefedov N. A., Isaev D. V., Semenova M. P., Astafurov V. I., Starinsky V. G., Shlygin V. V. Radiation situation at the facility of the former LPO Almaz enterprise. Hygiene and Sanitation. 2017, no. 9 (96), pp. 822— 826. [In Russ]. DOI: 10.18821/0016-9900-2017-96-9-822-826.

34. Chen J., Ford K. L. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities. Journal of Environmental Radioactivity. 2017, vol. 166, pp. 152—156. DOI: 10.1016/j.jenvrad.2016.01.018.

35. Leshukov T., Larionov A., Legoshchin K. V., Yakovleva S. N. Radon hazard assessment in region with intense coal mining industry. IOP Conference Series: Earth and Environmental Science. 2020, vol. 543, no. 1, article 012026. DOI: 10.1088/1755-1315/543/1/012026.

36. Tchorz-Trzeciakiewicz D. E., Solecki A. T. Variations of radon concentration in the atmosphere. Gamma dose rate. Atmospheric Environment. 2018, vol. 174, pp. 54—65. 10.1016/j.atmosenv.2017. 11.033.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.