Analysis of deformation processes by survey data of laser scanning and photogrammetry

The article describes the algorithm of detection and localization of deformation process zones from the analysis of different-time geospatial data (clouds of points) collected during surveying by laser scanning and photogrammetry. The current procedures in organization and implementation of deformation monitoring survey are listed with indication of their deficiencies and limitations. The algorithm developed by the authors to determine ground surface subsidence is described. Using the obtained data on subsidences, the characteristics of the movement process were determined (incline and curvature). The proposed procedure was tested as a case-study of the analysis of pit wall scans from a land-based laser scanning system and photogrammetry images of natural landslide from an unmanned aerial vehicle. Using the obtained results, the maps of subsidences, inclines and curvature were plotted, which allowed the visual and quantitative analyses of deformation processes on the surface being observed. In the course of examination of the results, a method was proposed to filter noises present on the deformation maps owing to errors of the models under interpretation. Furthermore, a method of detection of displacement zones was proposed based on subsidence classification using the Gaussian mixture models. The outcome of the implemented research is the algorithm of integrated processing of surveying data, which enables automation of data processing in geodetic survey and monitoring of deformation processes.

Keywords: surveying, landslide, deformation, laser scanning, photogrammetry, deformation monitoring, regular models, models of triangulated irregular networks.
For citation:

Vystrchil M. G., Mukminova D. Z., Baltyzhakova T. I., Paramonov V. G., Valkovа E. O. Analysis of deformation processes by survey data of laser scanning and photogrammetry. MIAB. Mining Inf. Anal. Bull. 2025;(2):78-98. [In Russ]. DOI: 10.25018/0236_1493_ 2025_2_0_78.

Acknowledgements:
Issue number: 2
Year: 2025
Page number: 78-98
ISBN: 0236-1493
UDK: 622.1:528.481/.482
DOI: 10.25018/0236_1493_2025_2_0_78
Article receipt date: 05.11.2024
Date of review receipt: 18.12.2024
Date of the editorial board′s decision on the article′s publishing: 10.01.2025
About authors:

M.G. Vystrchil1, Cand. Sci. (Eng.), Assistant Professor, Assistant Professor, e-mail: Vystrchil_MG@pers.spmi.ru, ORCID ID: 0000-0002-1669-7776,
D.Z. Mukminova1, Cand. Sci. (Eng.), Head of Laboratory, Geomechanics and Mining Problems Research Centre, e-mail: Mukminova_DZ@pers.spmi.ru, ORCID ID: 0000-0002-5595-9150,
T.I. Baltyzhakova, Cand. Sci. (Eng.), Assistant Professor, ITMO University, 197101, Saint-Petersburg, Russia, e-mail: tibaltyzhakova@itmo.ru, ORCID ID: 0000-0001-9160-1167,
V.G. Paramonov, Mine Surveyor, JSC Evraz KGOK, 624350, Kachkanar, Russia, e-mail: Vladimir.paramonov@evraz.com,
E.O. Valkovа1, Graduate Student, e-mail: s215081@stud.spmi.ru, ORCID ID: 0000-0003-1440-1318,
1 Empress Catherine II Saint Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

M.G. Vystrchil, e-mail: Vystrchil_MG@pers.spmi.ru.

Bibliography:

1. Jin L., Liu P., Yao W., Wei J. A comprehensive evaluation of resilience in abandoned openpit mine slopes based on a two-dimensional cloud model with combination weighting. Mathematics. 2024, vol. 12, article 1213. DOI: 10.3390/math12081213.

2. Ponomarenko M. R., Kutepov Yu. I., Shabarov A. N. Open pit mining monitoring support with information and analysis using web mapping technologies. MIAB. Mining Inf. Anal. Bull. 2022, no. 8, pp. 56—70. [In Russ]. DOI: 10.25018/0236_1493_2022_8_0_56.

3. Alenichev I. A., Rakhmanov R. A. Empirical regularities investigation of rock mass discharge by explosion on the free surface of a pit bench. Journal of Mining Institute. 2021 vol. 249, pp. 334—341. [In Russ]. DOI: 10.31897/PMI.2021.3.2.

4. Kuzin A. A., Filippov V. G. Forecasting landslide displacement values based on geodetic data. Sustainable Development of Mountain Territories 2024 vol. 16, no. 3, pp. 1176—1191. [In Russ]. DOI: 10.21177/1998-4502-2024-16-3-1176-1191.

5. Kuzin A. A., Filippov V. G. Method for determining the plan view coordinates and height of the working benchmark on a landslide with forced inclinations of the pole from the plumb position. Geodesy and Cartography. 2024, no. 9, pp. 2—11. [In Russ]. DOI: 10.22389/0016-7126-2024-1011-9-2-11.

6. Tan W., Wang Y., Huang P., Yaolong Qi, Wei Xu, Chunming Li, Yuejuan Chen A method for predicting landslides based on micro-deformation monitoring radar data. Remote Sensing. 2023, vol. 15, no. 3, article 826. DOI: 10.3390/rs15030826.

7. Martins B. H., Suzuki M., Yastika P. E., Shimizu N. Ground surface deformation detection in complex landslide area—Bobonaro, Timor-Leste—using SBAS DInSAR, UAV photogrammetry, and field observations. Geosciences. 2020, vol. 10, no. 6, article 245. DOI: 10.3390/geosciences10060245.

8. Choker H. M., Mustafin M. G. Geodesic support of laser scan technology use for fixing cultural heritage objects. Geodesy and Cartography. 2021, no. 2, pp. 2—10. [In Russ]. DOI: 10.22389/00167126-2021-968-2-2-10.

9. Mayr A., Bremer M., Rutzinger M., Geitner C. Unmanned aerial vehicle laser scanning for erosion monitoring in alpine grassland. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019, vol. IV-2/W5, pp. 405—412. DOI: 10.5194/isprs-annals-IV-2-W5-405-2019.

10. Zenkov I. V., Trinh Le Hung, Sycheva E. M., Vokin V. N., Kiryushina E. V., Cherepanov E. V., Gerasimova E. I., Shtresler K. A., Novozhenin S. Yu. A study of the operational dynamics of the fuel and energy complex in the State of South Australia using satellite imaging data. Ugol’. 2023, no. 10, pp. 109—112. [In Russ]. DOI: 10.18796/00415790-2023-10-109-112.

11. Holst C., Kuhlmann H. Challenges and present fields of action at laser scanner based deformation analyses. Journal of Applied Geodesy. 2016, vol. 10, no. 1, pp. 17—25. DOI: 10.1515/jag-20150025.

12. Glazunov V. V., Burlutsky S. B., Shuvalova R. A., Zhdanov S. V. Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data. Journal of Mining Institute. 2022 vol. 257, pp. 771—782. [In Russ]. DOI: 10.31897/PMI.2022.86.

13. Sholomitskii A. A., Khannanov R. R., Oleinikova E. A. Features of processing and analysis of the results of terrestrial laser scanning during geodetic monitoring of earth dams. Vestnik of the Siberian State University of Geosystems and Technologies (SSUGT). 2024 vol. 29, no. 2, pp. 31—40. [In Russ].

14. Wunderlich T., Niemeier W., Wujanz D., Holst C. C., Neitzel F., Kuhlmann H. Areal deformation analysis from TLS point clouds — the challenge. AVN Allgemeine Vermessungs-Nachrichten. 2016, vol. 123, pp. 340—351.

15. Zieher T., Bremer M., Rutzinger M., Pfeiffer J., Fritzmann P., Wichmann V. Assessment of landslide-induced displacement and deformation of above-ground objects using UAV-borne and airborne laser scanning data. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019, vol. IV-2/W5, pp. 461—467. DOI: 10.5194/isprs-annals-IV-2-W5-461-2019.

16. Mao Y., Wang H., Cao W., Fu Y., He L., Bao N. Extraction of step-feature lines in open-pit mines based on UAV point-cloud data. Sensors. 2022, vol. 22, article 5706. DOI: 10.3390/s22155706.

17. Holst C., Janßen J., Schmitz B., Blome M., Dercks M., Schoch-Baumann A., Blöthe J., Schrott L., Kuhlmann H., Medic T. Increasing spatio-temporal resolution for monitoring alpine solifluction using terrestrial laser scanners and 3D vector fields. Remote Sensing. 2021, vol. 13, article 1192. DOI: 10.3390/rs13061192.

18. Li P., Wang R., Wang Y., Tao W. Evaluation of the ICP algorithm in 3D point cloud registration. IEEE Access. 2020, vol. 8, pp. 68030—68048. DOI: 10.1109/ACCESS.2020.2986470.

19. Brigadnov I., Lutonin A., Bogdanova K. Error state extended kalman filter localization for underground mining environments. Symmetry. 2023, vol. 15, no. 2, article 344. DOI: 10.3390/sym15020344.

20. Lague D., Brodu N., Leroux J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing. 2013, vol. 82, pp. 10—26. DOI: 10.1016/j.isprsjprs.2013.04.009.

21. Ma S., Qiu H., Zhu Y., Yang D., Tang B., Wang D., Wang L., Cao M. Topographic changes, surface deformation and movement process before, during and after a rotational landslide. Remote Sensing. 2023, vol. 15, article 662. DOI: 10.3390/rs15030662.

22. Ding Zhiheng, Li Renfu Point Cloud reduction method based on curvature grading and voxel filtering. Journal of Electrical Systems. 2024, vol. 20, no. 2, pp. 318—326. DOI: 10.52783/jes.1180.

23. Zieher T., Toschi I., Remondino F., Rutzinger M., Kofler Ch., Mejia-Aguilar A., Schlögel R. Sensorand scene-guided integration of TLS and photogrammetric point clouds for landslide monitoring.ISPRS — International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2018, vol. XLII-2, pp. 1243—1250. DOI: 10.5194/isprs-archives-XLII-2-1243-2018.

24. Wilson M. F. J., O’Connell B., Brown C., Guinan J. C., Grehan A. J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Marine Geodesy. 2007, vol. 30, no. 1-2, pp. 3—35. DOI: 10.1080/01490410701295962.

25. Voloshina E. A., Novozhenin S. Yu., Kelekhsaev S. K. Substantiation of use of unmanned aerial vehicles in volume evaluation of mineral storages. MIAB. Mining Inf. Anal. Bull. 2023, no. 11-1, pp. 305—321. [In Russ]. DOI: 10.25018/0236_1493_2023_111_0_305.

26. Ilyukhin D. A., Marinin M. A., Rakhmanov R. A. Analysis of broken-rock disintegration using photogrammetric method. Gornyi Zhurnal. 2023, no. 9, pp. 12—21. [In Russ]. DOI: 10.17580/ gzh.2023.09.02.

27. Gusev V. N., Blishchenko A. A., Sannikova A. P. Study of a set of factors influencing the error of surveying mine facilities using a geodesic quadcopter. Journal of Mining Institute. 2022 vol. 254, pp. 173—179. [In Russ]. DOI: 10.31897/PMI.2022.35.

28. Vystrchil M. G., Baltyzhakova T. I., Romanchikov A. Yu., Bogolyubova A. A. Algorithm of land surface points extraction from airborne laser scanning data. Geodesy and Cartography. 2024, no. 2, pp. 2—11. [In Russ]. DOI: 10.22389/0016-7126-2024-1004-2-2-11.

29. Eirola E., Lendasse A. Gaussian mixture models for time series modelling, forecasting, and interpolation. Advances in Intelligent Data Analysis XII. IDA 2013. Lecture Notes in Computer Science. Berlin, Springer, vol. 8207, pp. 162—173.

30. Ivezić Ž., Connolly A. J., VanderPlas J. T., Gray A. Statistics, data mining, and machine learning in astronomy: a practical python guide for the analysis of survey data. Princeton: Princeton University Press, 2014. DOI: 10.1515/9781400848911.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.