Laboratory deformation testing of salt rocks from the Gremyachinsk and Upper Kama deposits

Investigation of physical and mechanical properties of rocks is an integral component of safe and efficient mineral mining. Such investigations are of special concern in construction of Gremyachinsk potash mine. This study aims to investigate deformation of Gremaychinsk salt rocks in uniaxial and triaxial compression testing under conditionally instantaneous and long-term loading. For the comparison of deformation characteristics, laboratory testing involved potash salt from the Upper Kama deposit. The instantaneous test data of salt rocks are presented, and the effect of the side pressure value on the mechanical characteristics of ultimate strength, secant modulus of deformation, secant modulus of relaxation and deformation at retained ultimate strength is analyzed. It is found that Gremychinsk and Upper Kama salt rocks have similar values of the listed mechanical characteristics. The deformation behavior of Gremyachinsk and Upper Kama salt rocks is different. Gremyachinsk salt rocks feature lower rate and stationary creep and, thus, higher long-term ultimate strength. The obtained results can be of interest to practitioners in construction of underground mines in salt rocks.

Keywords: salt rocks, ultimate strength, deformation modulus, ultimate long-term strength, creep, uniaxial compression, triaxial compression, sylvinite.
For citation:

Morozov I.A., Udarcev A.A., Pankov I. L. Laboratory deformation testing of salt rocks from the Gremyachinsk and Upper Kama deposits. MIAB. Mining Inf. Anal. Bull. 2020;(10):16-28. [In Russ]. DOI: 10.25018/0236-1493-2020-10-0-16-28.


The study was carried out under State Contract No. NIOKTR AAAA-A18-118040690032-2, and was supported by the Russian Foundation for Basic Research and by the Perm Krai, Project No. 19-45-590004.

Issue number: 10
Year: 2020
Page number: 16-28
ISBN: 0236-1493
UDK: 622.831
DOI: 10.25018/0236-1493-2020-10-0-16-28
Article receipt date: 27.03.2020
Date of review receipt: 15.04.2020
Date of the editorial board′s decision on the article′s publishing: 20.09.2020
About authors:

I.A. Morozov, Graduate Student, Perm National Research Polytechnic University, 614990, Perm, Russia,
A.A. Udarcev1, Junior Researcher, e-mail:,
I.L. Pankov1, Cand. Sci. (Eng.), Senior Researcher,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.


For contacts:

A.A. Udarcev, e-mail:


1. Ciceri D., Manning D.A. C., Allanore A. Historical and technical developments of potassium resources. Science of the Total Environment. 2015. Vol. 502. Pp. 590—601. DOI: 10.1016/j. scitotenv.2014.09.013.

2. Dmitrieva D., Ilinova A., Kraslawski A. Strategic management of the potash industry in Russia. Resources Policy. 2017. Vol. 52. Pp. 81—89. DOI: 10.1016/j.resourpol.2016.11.004.

3. Morozov I.A. General approaches formation to increase the stability of capital mining operations in deep potash mines. Problemy razrabotki mestorozhdenii uglevodorodnykh i rudnykh poleznykh iskopaemykh. Materialy XI Vserossiiskoi nauchno-tekhnicheskoi konferentsii [Problems of development of deposits of hydrocarbon and ore minerals: materials of the XI allRussian scientific and technical conference], Perm, PNIPU, 2018, pp. 351—353. [In Russ].

4. SP 69.13330.2016. Podzemnye gornye vyrabotki [Set of rules 69.13330.2016. Underground mining operations], Moscow, Standartinform, 2017, 27 p.

5. Pankov I. L., Asanov V.A., Udarcev A.A., Kuzminyh V. S. Practice of test facilities usage during researches on deformation and failure of quasiplastic rocks in laboratory conditions. Vestnik Kyrgyzsko-rossiyskogo slavyanskogo universiteta. 2013, vol. 16, no 1, pp. 163—167. [In Russ].

6. Agnieszka Maj. Rock-mass movement monitoring system in historical salt mines, using the example of the Bochnia Salt Mine. Procedia Engineering. 2017. Vol. 191. Pp. 496—503. DOI: 10.1016/j.proeng.2017.05.209.

7. Stavrogin A. N., Tarasov B. G. Eksperimental'naya fizika i mekhanika gornykh porod [Experimental physics and mechanics of rocks], Saint-Petersburg, Nauka, 2001, 343 p.

8. Porody gornye. Metody opredeleniya predela prochnosti pri odnoosnom szhatii. GOST 21153.2-84 [Rocks. Determining strength methods under uniaxial compression. State standard 21153.2-84], Moscow, Izd-vo standartov, 2001, 10 p.

9. Porody gornye. Metody opredeleniya predela prochnosti pri ob"emnom szhatii. GOST 21153.8-88 [Rocks. Determining strength methods under triaxial compression. State standard 21153.8-88], Moscow, Izd-vo standartov, 1988, 17 p.

10. Bieniawski Z. T., Bernede M. J. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 1979. Vol. 16. No 2. Pp. 138—140. DOI: 10.1016/0148-9062(79)91451-7.

11. Kovari K., Tisa A., Einstein H. H., Franklin J.A. Suggested methods for determining the strength of rock materials in triaxial compression: revised version. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 1983. Vol. 20. No 6. Pp. 285—290. DOI: 10.1016/0148-9062(83)90598-3.

12. Baryakh A.A., Konstantinova S.A., Asanov V.A. Deformirovanie solyanykh porod [Deformation of salt rocks], Yekaterinburg, UrO RAN, 1996, 203 p.

13. Bolikov V. E., Konstantinova S.A. Prognoz i obespechenie ustoichivosti kapital'nykh gornykh vyrabotok [Prediction and ensuring the stability of capital mining operations], Ekaterinburg, UrO RAN, 2003, 374 p.

14. Kartashov Yu. M., Matveev B. V., Mikheev G. V., Fadeev A. B. Prochnost' i deformiruemost' gornykh porod [Rock strength and deformability], Moscow, Nedra, 1979, 269 p.

15. Pan'kov I. L., Morozov I.A.Salt rock deformation under bulk multiple-stage loading. Journal of Mining Institute. 2019, vol. 239, pp. 510—519. [In Russ]. DOI: 10.31897/PMI.2019.5.510.

16. Artkhonghan K., Sartkaew S., Thongprapha T., Fuenkajorn K. Effects of stress path on shear strength of a rock salt. International Journal of Rock Mechanics and Mining Sciences. 2018. Vol. 104. Pp. 78—83. DOI: 10.1016/j.ijrmms.2018.02.014.

17. Müllera Ch., Frühwirt Th., Haase D., Schlegel R., Konietzky H. Modeling deformation and damage of rock salt using the discrete element method. International Journal of Rock Mechanics and Mining Sciences. 2018. Vol. 103. Pp. 230—241. DOI: 10.1016/j.ijrmms.2018.01.022.

18. Sriapai T., Walsri Ch., Fuenkajorn K. True-triaxial compressive strength of Maha Sarakham salt. International Journal of Rock Mechanics and Mining Sciences. 2013. Vol. 61. Pp. 256—265. DOI: 10.1016/j.ijrmms.2013.03.010.

19. Aditya Singh, Chandan Kumar, Gopi Kannan L., Seshagiri Rao K., Ayothiraman R. Estimation of creep parameters of rock salt from uniaxial compression tests. International Journal of Rock Mechanics and Mining Sciences. 2018. Vol. 107. Pp. 243—248. DOI: 10.1016/j. ijrmms.2018.04.037.

20. Wenjing Li, Yanhui Han, Tao Wang, Jiwei Ma DEM micromechanical modeling and laboratory experiment on creep behavior of salt rock. Journal of Natural Gas Science and Engineering. 2017. Vol. 46. Pp. 38—46. DOI: 10.1016/j.jngse.2017.07.013.

21. Aditya Singh, Chandan Kumar, Gopi Kannan L., Seshagiri Rao K., Ayothiraman R. Rheological behaviour of rock salt under uniaxial compression. Procedia Engineering. 2017. Vol. 173. Pp. 639—646. DOI: 10.1016/j.proeng.2016.12.122.

22. Ilyinov M. D., Kartashov Yu. M. Qiuck-acting technique for the determination of rheological properties of rocks. Journal of Mining Institute. 2011, vol. 190, pp. 207—209. [In Russ].

23. Ageenko V.A. Study of the rheological properties of salt rock. Izvestiya Ural’skogo gosudarstvennogo gornogo universiteta. 2019, no 53, pp. 115—120. [In Russ]. DOI: 10.21440/23072091-2019-1-115-120.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.