Effectiveness of removing heavy metals from groundwater

The author is conducting laboratory studies to determine a cost-effective method for filtering groundwater from heavy metals in the city of Moscow, where in the first stage, during the development of a pit, most of the soil metals are precipitated, followed by excavation, and the remaining heavy metals will be purified during processing for use for drinking purposes. Various water reuse technologies are also discussed, including mechanical, sorption, reverse osmosis, and UV purification. The experiment allowed us to compare the effectiveness of using a heat pump and reverse osmosis for water purification. The heat pump system has proven to be effective in removing metals. The author proposed a modified method of water purification in a complex solution to soil and groundwater pollution during the development of underground space that meets the standards, where the “water-steam-water” system operated on renewable energy sources. The possibility of using the proposed method in the construction of residential complexes and business centers using solar panels and lightweight versions of wind generators has been assessed. Overall, the experiment showed that a reliable water purification system may require additional costs, and preheating the water before purification can reduce energy consumption. This method can be effectively implemented using a comprehensive method for combating the pollution of underground space with heavy metals, where the development of soil can initially use microorganisms to precipitate most of the metals in the soil, which will later be used for phytoremediation, and water – for drinking purposes.

Keywords: pollution of underground space, removal of heavy metals, an integrated method of combining construction and ecology, groundwater filtration, water-steam-water system, reverse osmosis, geo-ecological risk, renewable energy sources.
For citation:

Sareu N. Yu. Effectiveness of removing heavy metals from groundwater. MIAB. Mining Inf. Anal. Bull. 2024;(5):79-89. DOI: 10.25018/0236_1493_2024_5_0_79.

Issue number: 5
Year: 2024
Page number: 79-89
ISBN: 0236-1493
UDK: 628.164
DOI: 10.25018/0236_1493_2024_5_0_79
Article receipt date: 05.02.2024
Date of review receipt: 06.03.2024
Date of the editorial board′s decision on the article′s publishing: 10.04.2024
About authors:

N.Yu. Sareu, Graduate Student, University of Science and Technology MISIS, 119049, Moscow, Russia, e-mail: ksareu7777@mail.ru.


For contacts:

1. Mulligan C. N., Yong R. N., Gibbs B. F. An evaluation of technologies for the heavy metal remediation of dredged sediments. Journal of Hazardous Materials. 2001, vol. 85, pp. 145—163.

2. Megharaj M., Ramakrishnan B., Venkateswarlu K., Sethunathan N., Naidu R. Bioremediation approaches for organic pollutants: a critical perspective. Environment International. 2011, vol. 37, pp. 1362—1375.

3. Karataev O. R., Karataeva E. S. Mechanical filtration, based on elective concentration of particles, as an innovative method of water treatment. IOP Conference Series: Materials Science and Engineering. 2018, vol. 412, no. 1, article 012030. DOI: 10.1088/1757-899X/412/1/012030.

4. Kiwoong Kim, Eunseok Seo, Suk-Kyu Chang, Tae Jung Park, Sang Joon Lee Novel water filtration of saline water in the outermost layer of mangrove roots. Scientific Reports. 2016, vol. 6, article 20426. DOI: 10.1038/srep20426.

5. Rolph C. A., Jefferson B., Hassard F., Villa R. Metaldehyde removal from drinking water by adsorption onto filtration media: mechanisms and optimization. Environmental Science: Water Research & Technology. 2018, vol. 4, pp. 1543—1552. DOI: 10.1039/C8EW00056E.

6. Trifonova T. A., Povorov A. A., Shirkin L. A., Selivanova O. G., Ilyina M. E. Efficiency assessment of ultra-filtration pretreatment prior to reverse osmosis separation of contaminated natural water. International Journal of Emerging Trends in Engineering Research. 2020, vol. 8, no. 5, pp. 1535—1538. DOI: 10.30534/ijeter/2020/10852020.

7. Hasan M., Louhi-Kultanen M. Water purification of aqueous nickel sulfate solutions by air cooled natural freezing. Chemical Engineering Journal. 2016, vol. 294, pp. 176—184. DOI: 10.1016/j. cej.2016.02.114.

8. Kulikova E. Yu., Balovtsev S. V. Risk control system for the construction of urban underground structures. IOP Conference Series: Materials Science and Engineering. 2020, 962, no. 4, article 042020. DOI: 10.1088/1757-899X/962/4/042020.

9. Kulikova E. Yu., Ivannikov A. L. The terms of soils removal from the defects of the underground structures’ lining. Journal of Physics: Conference Series. 2020, vol. 1425, no. 1, article 012062. DOI: 10.1088/1742-6596/1425/1/012062.

10. He X. C., Xu Y. S., Shen S. L., Zhou A. N. Geological environment problems during metro shield tunnelling in Shenzhen, China. Arabian Journal of Geosciences. 2020, vol. 13, no. 2, article 87. DOI: 10.1007/s12517-020-5071-z.

11. Xu Y. S., Shen J. S., Zhou A. N., Arulrajah A. Geological and hydrogeological environment with geohazards during underground construction in Hangzhou: a review. Arabian Journal of Geosciences. 2018, vol. 11, article 544. DOI: 10.1007/s12517-018-3894-7.

12. Kulikova E. Yu. Estimation of factors of aggressive influence and corrosion wear of underground structures. Materials Science Forum. 2018, vol. 931, pp. 385—390. DOI: 10.4028/www.scientific.net/MSF.931.385.

13. Rodinkov O. V., Bugaichenko A. S., Spivakovskyi V., Postnov V. N. Sorption preconcentration of volatile organic compounds in air analysis with a change in the configuration of the sorption layer in a transition from sorption to thermal desorption. Journal of Analytical Chemistry. 2021, vol. 76, no. 6, pp. 707—713. DOI: 10.1134/S1061934821060125.

14. Goncharova E. N.,Statkus M. A., Tsisin G. I., Zolotov Yu. A. Porous graphitized carbon for the separation and preconcentration of hydrophilic substances. Journal of Analytical Chemistry. 2020, vol. 75, no. 4, pp. 423—442. DOI: 10.1134/S1061934820040036.

15. Sayyad S. U., Kamthe N. K., Sarvade S. M. Design and simulation of reverse osmosis process in a hybrid forward osmosis-reverse osmosis system. Chemical Engineering Research and Design. 2022, vol. 183, pp. 210—220. DOI: 10.1016/j.cherd.2022.05.002.

16. Reihaneh Abouei Mehrizi, Seyyed Ahmad Mirbagheri, Amin Shams Development of a generalized mathematical model for two-stage reverse osmosis desalination systems. Computers & Chemical Engineering. 2023, vol. 182, no. 9, article 108562. DOI: 10.1016/j.compchemeng.2023.108562.

17. Liu Sh., Ma G., Jia X., Xu Sh., Wu G. Simulation research on heat recovery system of heat pump composite pump-driven loop heat pipe. Thermal Science. 2022, vol. 26, no. 5, part B, pp. 4301—4313.

18. Karmaker H. C. Design concepts for a direct drive wind generator using new superconductors. IEEE Electrical Power and Energy Conference (EPEC). 2016, pp. 6—14. DOI: 10.1109/EPEC. 2015.7379921.

19. Sun B., Guo Y., Yang D., Li H. The effect of constant magnetic field on convective heat transfer of Fe3O4 / Water magnetic nanofluid in horizontal circular tubes. Applied Thermal Engineering. 2020, vol. 171, article 114920. DOI: 10.1016/j.applthermaleng.2020.114920.

20. Hatami M. Cross-sectional heat transfer of hot tubes in a wavy porous channel filled by Fe3O4 — water nanofluid under a variable magnetic field. European Physical Journal Plus. 2018, vol. 133, no. 9, pp. 1—14. DOI: 10.1140/epjp/i2018-12170-3.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.