Bibliography: 1. Yarkin, A. V. (2014). Improving the performance of hydraulic drive high-pressure hoses during operation in harsh climatic conditions. Electronic scientific journal «Engineering Bulletin of the Don» 3. URL: http://ivdon.ru/magazine/archive/n3y2014/2512 (Access date: 10.02.2022).
1. Kaverzin, S. V. (1998). Ensuring the operability of the hydraulic drive at low temperatures (Krasnoyarsk), 240.
2. Karnaukhov, N. N. (2013). Features of operation of hydraulic excavators in cold climatic conditions. Monthly scientific, technical and production journal. Construction and road machines, 9, 37−44.
3. Martin, J. M., Smith, W. K. (2006). Production and application of rubber products : translation from English (St. Petersburg: Profession), 477.
4. Kadantseva, A. I., Tverskoy, V. A. (2008). Carbon fibers. Study guide (Moscow MITHT named after M. V. Lomonosov), 55.
5. Samarskii, A. A., Vabishchevich, P. N. (1995). Computational Heat Transfer, 2 The Finite Difference Methodology (Chichester: John Wiley & Sons), 432.
6. Afanaseva, N. V., Kolesov, A. E. (2016). Numerical solution of the thermal influence of oil well cluster on permafrost. AIP Conference Proceedings, 1773(1), 110001. DOI:10.1063/1.4965005.
7. Alnæs, M. S. (2015). The FEniCS Project Version 1.5 Archive of Numerical Software, 100(3), 9–23. DOI: 10.11588/ans.2015.100.20553.
8. Sharikov, Y. V., Markus, A. A. (2013). Mathematical modeling of heat transfer in pipelines and pipe’s objects. Journal of Mining Institute, 202, 235.
9. Kazantsev, E. I. (1964). Industrial furnaces. Moscow, 452.
10. Krivandin, V. A. (2002). Heat engineeringof metallurgicalproduction. Moscow, 1, 608.
11. Kutateladze, S. S. (1990). Heat transfer and flow resistance. Moscow, 1990, 367.
12. Mikheev, M. A. (1973). Fundamentals of Heat Transfer, Moscow, 1973, 319.
13. Insulation. Materials. Construction. Technology. Edited by S. M.Kocherhin. Moscow, 2008, 440.
14. Tkach S. M. Studies of the N. V. Chersky Mining Institute of the North to improve the geotechnologies, methods and tools for the efficient development of subsoil in permafrost. MIAB. Mining Inf. Anal. Bull. 2021;(12–1):5–14. [In Russ]. DOI: 10.25018/0236_1493_2021_121_0_5.
15. Ilinova, A., Solovyova, V., Yudin, S., et al. (2020). Scenario-based forecasting of Russian Arctic energy shelf development. Energy Reports, 21100389511, 6, 1349−1355 DOI: 10.1016/j.egyr.2020.11.022.
16. Samylovskaya, E., Makhovikov, A., Lutonin, A., et al. (2022). Digital Technologies in Arctic Oil and Gas Resources Extraction: Global Trends and Russian Experience, Resources, 21100808642, 11. DOI: 10.3390/resources11030029.
17. Litvinenko, V. (2020). Foreword: Sixty-year Russian history of Antarctic sub-glacial lake exploration and Arctic natural resource development, Chemie der Erde, 00092819, 80. DOI: 10.1016/j.chemer.2020.125652.
18. Kirsanov, A. N., Zinenko, V. P., Kardysh, V. G. (1981). Drilling machines and mechanisms. Moscow: Nedra, 448.
19. Timofeev, N. G., Scriabin, R. M., Tatarinov, D. M. (2017). On the problem of drilling wells with self-propelled drilling rigs in the conditions of the Far North. Drilling wells in complicated conditions: II International Scientific and Practical Conference, 57−59.
20. Timofeev, N. G., Petrov, V. L. (2018). The method of maintaining the operability of self-propelled drilling rigs in winter. Geosciences: problems, achievements and development prospects: materials of the All-Russian Youth Scientific and Practical Conference, 219−222